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ABSTRACT

This report describes experimental and theoretical work done as Phase III of a
program sponsored by NASA (Marshall SFC) to investigate the magnitude, origin and
parametric variations of destabilizing forces which arise in high power turbines due to
blade-tip leakage effects. P,hases I and II consisted of background research and
facility development, respectively, and have been reported on separately.

The two facilities which were built for this purpose are first described. The
larger one is a closed, 2 atm pressurized Freon-12 flow loop in which is installed a 1:1
replica of the SSME first stage hydrogen turbine, which can be driven by the flow, and
which generates about 14 KW of power into a load-absorbing DC generator. The
turbine shaft can be precisely offset along one linear axis by a fraction of the gap
clearance, both statically and dynamically, by using an inertial shaker. A rotating
dynamometer senses directly all components of force on the turbine. Flow
instrumentation is also provided in the form of traversing directional probes on a
rotatable casing, plus numerous wall taps. This instrumentation is used to investigate
the disturbances caused to the flow field by the turbine offset. The smaller facility is
used to measure the forces on labyrinth seals of the same type as those used in our
turbine tests with a shrouded turbine. The seals can be kinematically whirled and

spun (independently), and the inlet swirl can be set to a variety of values. Air is the
working fluid (with atmospheric discharge) and the data are real-time pressure
distributions in the seal glands.

Five different unshrouded turbine configurations were tested with static offsets,

plus one with a shroud band and a two-ridge seal. The forces along and
perpendicular to the offset were measured directly with the dynamometer, and were
also inferred form velocity triangles and pressure distributions obtained from detailed
flow surveys. These two routes yielded values in fair agreement in all cases. The
cross-forces are seen to originate mainly (~2/3) from the classical Alford mechanism
(nonuniform work extraction due to varying blade efficiency with tip gap) and about 1/3
from a slightly skewed hub pressure pattern. The direct forces arise mainly (75%) from
this pressure pattern, the rest from a slight skewness of the Alford mechanism. The
pressure nonuniformity (lower pressures near the widest gap) is seen to arise from a
large-scale redistribution of the flow as it approaches the eccentric turbine.

The cross-forces are found to increase substantially when the gap is reduced
from 3% to 1.9% of blade height, probably due to viscous blade-tip effects. The forces
also increase when the hub gap between stator and rotor decreases. The force
coefficient decreases with operating flow coefficient.

In the case of the shrouded turbine, most of the forces arise from nonuniform

seal pressures. This includes about 1/2 of the transverse forces. The rest appears to
come from uneven work extraction (Alford mechanism). Their level is about 50%
higher than in the unshrouded cases.

The seals rig data were obtained for five seal builds, three of them with smooth
stator, two with a honeycomb stator. The seals are all one-gland, straight-through.
Dynamic damping is found to be an inviscid mechanism, largely independent of swirl
or spin. Swirl determines strongly the static (zero whirl) cross-forces. The direct forces
(restoring) are found to depend on a subtle effect, involving variation of the carry-over
coefficient with gap. The honeycomb land has little effect on cross-forces, while
largely eliminating direct forces.

The work on the dynamic Alford forces could not extract quantitative data.
Progress was made by building and testing a dynamic shaking apparatus, but the



forces to be measured were masked by larger dynamic and vibratory forces sensed by
the dynamometer. Two possible avenues are suggested for improving this situation:
and (a) testing with an eccentrically mounted turbine, in which case whirl and spin
speeds coincide, and dynamic disturbances should be minimal, and/or (b) Extracting
the radial forces from real-time flow measurements.

Theoretical models of various degrees of complexity were developed to help
interpreting and extrapolating the data. The notion of partial work done by the fluid
leaking through the tip gaps was put on a quantitative basis by examining the leakage
vortex roll-up dynamics. This was used to obtain a theory of the work loss due to a
uniform gap. Perturbation and multiple scale arguments were then used to extend this
to the case of an eccentric turbine. This yields an unsteady, 3-D theory which can
predict the redistribution of the approach flow, and its effect on work defect, cross-
forces, pressure patterns, and dynamic damping. The predictions agree qualitatively
with the data and exhibit the correct trends, but the cross-forces are generally under-
predicted.
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1.1 Problem Statement

This report details the results of our experimental and theoretical investigation

on the radial forces experienced by high power turbines when disturbed from their

concentric position. These forces arise because of the non-symmetric flow

disturbances caused near the blade tips by the lack of concentricity. They have been

referred to in the US as "Alford" forces, after J.S. Alford, who identified their basic

mechanism in a seminal paper on gas turbines [1], and also in Europe as "Thomas

forces", after similar independent work on steam turbines by H.J. Thomas [2]. Although

the Alford forces are relatively small in magnitude, their component at right angles to

the turbine deflection is usually not resisted by any structural stiffness, and can

therefore result in a dangerous buildup of whirling motion. Secondarily, their

component in line with deflection can produce a noticeable shift of the rotor natural

frequencies.

1.2 Structure of Research Program

Our program of research, sponsored by NASA Marshall SFC, was structured in

three phases:

• Phase I (1983-1985) included a review of previous work on this problem,

development of a simple theoretic'_l extension of Alford's model to include flow

redistribution effects, and a preliminary concept for an experimental rig. The results

were documented in Ref. [3].

• Phase II (1985-1988) included detailed design of a test facility, construction of this

facility, and acquisition of preliminary test data for facility verification. Results were

described in Ref. [4].

• Phase III (1988-1991) constituted the main experimental phase, on which the

present report will concentrate. The supporting theory developed will also be



described.

1.3 Discussion of Research Ap_oroach - Facility Desian Implications

As documented in Ref. [3], the previous state of knowledge about Alford forces

was deficient in several respects:

a) A small empirical data base. While some parametric variations had been studied

by Ulrichs [5] and Wohlrab [6], there was insufficient basis for generalization to

untested configurations or operating conditions.

b) A general lack of understanding of the detailed fluid mechanisms involved. Such

understanding was needed for any attempt at a predictive theory that could extend

beyond the data base.

c) An almost complete lack of data or theory about possible dynamic (i.e. velocity-

dependent) Alford forces.

d) In addition, there were questions about the accuracy of some of the existing data,

given the smallness of the radial forces compared to the main (tangential) turbine

forces. The apparent nonlinearities exhibited by some of the data in Refs. [5], [6],

and [7] could be due to these inaccuracies. There was also concern about the fact

that many (but not all) of the data had been obtained in test rigs with Reynolds

numbers below the range where fully turbulent conditions (prevalent in all real high

power turbines) are established.

Our research program was intended to improve the situation with respect to all

these concerns. Given the almost unlimited number of parameter variations that would

be required to cover the range of practical turbine configurations and operating

parameters, it was decided to emphasize basic understanding, both through detailed

flow mapping and through supporting theory development. However, to avoid missing

essential qualitatively new phenomena, a reasonable number of parameter variations

were planned, covering parameters which were likely (either a priori or from previous



data) to be sensitive. These parameters included Reynolds number, stator-rotor gap

(between blades and, separately, between hubs), radial mean clearance and

presence or absence of a shroud band. In addition, the operating conditions were to

be varied around the turbine nominal (best efficiency) operating point.

The concern about data contamination by operating in a laminar or transition

regime led (Ref. [4]) to the adoption of a closed loop, pressurized Freon test facility. At

the nominal 2 atm mean pressure, and using a 1:1 replica of the Shuttle first stage fuel

turbopump turbine, the test Reynolds number based on chord and stator leaving

velocity is then as high as 1.4x106, well above the 105-2x105 range normally

associated with transition. The pressurization also added confidence that the level of

the forces to be measured would be sufficient for accurate determination. This design

decision, however, did lead to complications, associated mainly with the need to

maintain sealing despite the several moveable casing parts required, and despite the

various shaft and probe penetrations needed. These difficulties were all overcome

but, in retrospect, some aspects of the program, particularly the dynamic testing, might

have been more successful had we opted for a simpler, atmospheric test rig.

The concern about accurate force measurement was addressed through the

adoption of a rotary dynamometer, designed according to the experience of Ref. [8].

This had several advantages: (a) the radial turbine forces were sensed at their source,

avoiding the contamination associated with bearings or seals when stationary force

balances are used; (b) since forces which are static in the fixed frame were read as

one-per-rev varying forces, we were able to use semiconductor strain gauges, which

have very high sensitivity and stiffness, but are inadequate for DC measurements

because of their drift; (c) a very compact design was possible, allowing simultaneous

sensing of all force and torque components. This led to some redundancy, which can

be exploited in the data reduction process. This dynamometer proved successful in

operation. The complication of having to extract the data through a multi-channel slip



ring assembly did imply a more laborious design and construction, but has not caused

any subsequent problems.

The desire for detailed flow probing led to the adoption of a rotatable turbine

casing, which would carry the flow probes for azimuthal scanning. Radial scanning

was accommodated by individual micrometric traversing mechanisms in each probe.

The turbine stator is rigidly supported by this casing, which means that no continuous

tangential scanning is possible with respect to the stator blading. This was only a

minor difficultly because, as corroborated through measurements, very little azimuthal

distortion exists upstream of the stator, whereas the distortion is strong downstream of

the turbine. Once again, the price to pay for the data acquisition flexibility of this

arrangement was design complexity. The main difficulty was achieving good pressure

sealing between the fixed and the rotatable sections of the casing, while keeping the

friction forces low enough for the motor drive to operate the casing smoothly. This was

accomplished successfully.

The nature of the research requires an ability to produce a precisely

controllable lateral offset of the turbine, within the small limits allowed by the radial

clearance (27 or 17 thousandths of an inch). This was the major driver for the

mechanical design of the test rig, because the various tolerances of the

subassemblies had to be tightly controlled to ensure the required precision. Two

consequences were: (a) high cost of the assembly fabrication, and (b) heavy, rigid

construction. The solution adopted (Ref. [4]) involved a stiff bearing support assembly,

mounted inside the pressure shell, and supported by two rigid bars sliding on linear

bearings with pressure seals. This did prove successful for static deflections, but the

large mass of the assembly and the dry friction of the bar seals and bearings dictated

the need for quite powerful shakers for dynamic deflection.

Another consequence of the requirement for small turbine shaft offsets is the

need to insert a shaft section fitted through flexible joints to the sections carrying the



turbine and the downstream power takeoff, respectively, This section has a slight

pivoting motion when the turbine shaft is offset, and the pressure seal required needs

to act as the pivot point, making its design difficult. A double-acting hydrostatic seal

was required, and it has proven satisfactory. A secondary effect of this arrangement is

the introduction of harmonic shaft cross-forces due to the flex coupling deflections.

These contaminate the force data sensed by the rotary dynamometer, but can be

filtered out in the data reduction process (see Section 2.3.1)

The issue of time-resolved versus time-averaged measurements had to be

faced in the design process. For purely static offset situations, the forces and flow

distortions of interest must be steady in the fixed frame (although superimposed

unsteadiness exists due to vibrations and to blade passage effects). On the other

hand, for measurements with time-varying offsets, as required in studying dynamic

effects, the applied disturbance frequency, at least, needs to be resolved. Given the

intrinsic high band pass of the semiconductor strain gauges, and the availability of

high speed data acquisit!on systems, time-resolving the dynamometer data presented

no difficulty in principle. On the other hand, time-resolving the flow data (largely

pressure readings) at the intended frequencies of up to about 50 Hz would have

required careful design, with short pressure lines to the transducers and minimum

volumes. Given the large number (close to 100) of such lines in our case, it was

decided to opt for a low response design instead, which would be adequate for

detailed mappings in the static-offset case. The exception, to be discussed more fully

below, was the special labyrinth seals rig, where four flush-mounted Kulite transducers

were used and time-resolved measurements were obtained.• The low response

design allows flexibility in routing the pressure lines and, through the use of a fast

scanning device, the number of transducers and amplifiers can be reduced to two,

unsteady of one per line.

As follows from the discussion so far, a large number of data channels was

s"
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required for these tests. Three different data acquisition systems were used (Ref. [4]):

(a) Dynamometer data (9 sets of full bridges) were sampled 32 or 64 times per

revolution (i.e. at a few kHz) by a Le Croy 8212A digitizing system. This was

necessary for proper filtering, projection onto the fixed frame, and scaling. (b)

Temperatures, torque, flow rate and other slowly varying signals were acquired

through a separate system (a digitizing card in the AT computer). (c) Close to 100

pressure points were scanned at 4 ports/sec using a 48-channel double Scanivalve

system, sensed using two transducers with reference taps connected to upstream and

downstream points, respectively, and digitized by the Scanivalve data system itself.

For systems (b) and (c), synchronization is not an issue, since only time-averaged

measurements were intended. System (a) had to be synchronized carefully in order to

obtain proper phase angles for the various forces sensed. Synchronization signals

were derived from either a shaft-mounted optical encoder, from proximeter signals

responding to individual blade passages, or, occasionally, from a magnetic pick-up

mounted on the lower shaft. This complex data acquisition system, plus its associated

data reduction software, required extensive work and constant attention, but worked

generally well.

It was recognized from the beginning that dynamic, in addition to static, effects

might be at work, and that their magnitude and sign would play an important role in the

resulting turbine dynamics. However, it was also recognized that their accurate

measurement presented problems much more difficult than those for static effects.

This is, in part, due to the data acquisition problems discussed above but, more

significantly, to the intrusion of inertia forces into the force sensing scheme. Unless the

forces could be sensed even closer to their source (i.e. possibly by blade strain

sensors), the turbine disk inertia would introduce force signals at least an order of

magnitude larger than those expected from fluid sources. This is so independently of

whether a shaker is used (imposed dynamic displacement) or a ring-down experiment

11



is done (free dynamics). Other difficulties arise from the additional vibrations

introduced in the process of dynamic shaking. The decision, discussed above, to go to

a pressurized system in order to increase sensitivity and Reynolds number,

complicated these effects by requiring tight seals on the turbine-offsetting rods. This,

plus the tight linear bearings needed for precise positioning, implied large forces to be

overcome during shaking. The design adopted for dynamic testing, and the

corresponding results and problems, will be more fully covered in Section 8. For the

present purposes, it is sufficient to say that the design philosophy adopted was to

ensure successful static results first. Allowance was made from dynamic testing, but its

special features did not dictate the rig design (except, once again, for the seals test

rig).

As noted above, a separate auxiliary test rig was also constructed to investigate

labyrinth seal forces. This was directed especially to the shrouded turbine

configuration, where earlier work [5], [6], [7], indicates that most of the Alford force can

be ascribed to the sealing labyrinth. This rig, which is significantly simpler than the

turbine facility, operates in open loop with air and, through a double-eccentric bearing

system, can produce simultaneous spinning and whirling motions in any combination.

Forces are not sensed directly, but instead, the pressure distribution in the seal cavity

is measured in real time, and integrated to yield the force components (shear force

effects can be estimated to be small by comparison). Because of the time resolution

and the whirling motion, this rig yields both static and dynamic force effects. The

results will be discussed in Section 7.

1.4 Theoretical ADDroach

The starting point for our understanding of the turbine radial forces was, as

noted, the work of Alford [1]. His argument, which is more fully explained in Refs. [3]

and [4] is that, because the efficiency of a turbine is known to decrease as tip gap
i"i
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increases, an offset turbine will generate a higher tangential force on the side whose

gap is reduced, and vice versa. Integration around the periphery then yields a pure

cross-force, with no component aligned with displacement, and with no dynamic lag or

lead. If 13= ;_1 is the sensitivity of turbine efficiency to (tip gap)/(blade height), Q is
_(8/[4)

the torque and R the mean radius, the force Fy due to an offset ex is found to be

Fy =__l 1 Q ex (1.1)

One critical assumption in this derivation is that the local tip gap determines the

local tangential force per unit length through the changes in local efficiency. In reality,

it can be expected that the presence of the unsymmetrically placed turbine will induce

a redistribution of the flow, so that a force redistribution would occur, even if the

efficiency remained constant. This redistribution must occur on a scale of the order of

R, and would be missed by calculations made on the blade scale. It will also be small

in magnitude (of order ex/H), and could be missed in measurements, even though its

net effect may be of the same order as that yielding Eq. (1). This indicates the need for

a theoretical approach that will determine the large-scale features of the flow in

response to the turbine offset. Actuator disk theory is one such approach, whereby the

details of the blading are condensed to a single plane, and the calculation extends to

distances upstream and downstream which are larger than the blade dimensions.

This type of model was developed early in our work (Ref. [3]). The flow was

radially averaged, and approximate connecting conditions were used to replace the

blading. The results showed the expected effect of flow redistribution, although the

numerical impact on net forces was small. An important feature that resulted was the

ability to treat unsteady offsets with the prediction of relatively minor impact for the

frequencies of interest.

The radial averaging in this type of model implies a loss of most of the detailed

flow features associated with tip gap, and necessitates a reliance on empirical 13

13



values. It also requires a crude set of connecting conditions, including (in our model)

the assumption of perfect guidance of flow by the blading. This is tenable for the

stator, but one of the strong features of the gap flow in the turbine is a large localized

underturning near the tip. For these reasons, a more complete theory was felt to be

needed.

This problem was approached in two steps. First, the radial migration effects

due to the tip gap were investigated by assuming a centered turbine, and deriving an

actuator disk theory which accounts for the tip gap presence. This permits the

introduction of strong radial gradients, localized underturning, differential axial

velocities and other physical effects due to the gap. The results explicitly give the

turbine loss of work and (separately) of efficiency as functions of tip gap, with no

empiricism. The theory is explained in Section 9.2.

The next step is the introduction of a non-uniform tip gap (as in an .offset

turbine). Since this produces azimuthal redistributions on a scale ~R, much greater

than the scale (~H) for the radial redistributions treated above, a multiple-scale

argument can be used, and the results of the radial redistribution theory can be locally

applied at each tangential location, except with the approaching flow conditions

obtained after tangential redistribution. This combination of two 2-D "actuator disk"

theories effectively yields a 3-D description of the flow, which can then be compared to

data. The theory is explained in Section 9.3.

As noted, these models can be extended to a time-dependent form, appropriate

for studying dynamic Alford forces. This is incorporated into the theory in Sec. 9.3.

Also treated is the effect of a finite axial hub gap.

J

2.0 Summary Descri_Dtion of Test Facilities

This section has two objectives: (a) to summarize, for easy reference, the

description of the test facilities used in our research (a more complete discussion is in

14



Ref. [4]); and (b) to update Ref. [4] by discussing rig modifications and additions which

occurred after January 1990.

2.1 ThQ Alford Force Test Facility (AFTF)

As noted in the introduction, this was the major test rig, used to measure turbine

forces directly and to map flow fields about eccentric turbines. It is a pressurized,

Freon 12 filled loop fitted with a gas blower, heat exchanger/cooler, removable turbine

test section, power extraction generator, and data system. Nominal operating

conditions are 30 psia mean pressure, 4.4 kg/sec flow rate.

Figures 2.1 and 2.2 show two views of the facility. As indicated, the test section

is vertical, with flow from above. Flow control is accomplished via manually adjusted

valves (4 in Fig. 2.1). The bypass valve (13 in Fig. 2.1) was only used for low flow

tests, mainly with the shrouded turbine. Turbine speed control is accomplished by

varying the excitation current to the load-extracting DC generator (14 in Fig. 2.2). The

DC power generated is dissipated in a resistor bank cooled by an air draft induced by

the laboratory steam ejector. The bank can be reconfigured for additional turbine

control, but this was found unnecessary, because of the excellent power regulation

capabilities of the DC supplies used for generator excitation. The loop itself was

constructed out of 10 inch and 12 inch diameter PVC piping, with glued flanges

carrying neoprene gaskets. The blower (mounted on a platform outside the

laboratory) is an upgraded 100 HP Stanley blower, fitted with a double-acting

mechanical seal (for pressure and vacuum operation). The heat exchanger, rated at

52 KWth, uses city water. A commercially obtained Venturi tube is used for flow rate

measurements (3 in Fig. 2.1). The loop has operated with no problems throughout the

test series.

Figure 2.3 shows in more detail the test section area. The "Upper Section" of

the casing (Part 12) can be rotated by __.90° by a motor-driven chain mechanism. It

15
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Fig. 2.1: Overall view of the Alford force test facility, front view. (1) Turbine test section.
(2) Blower. (3) Heat exchanger. (4) Bypass duct. (5) Bypass valve. (6) Throttle
valve (upper). (7) Throttle valve (lower). (8) Venturi flow meter. (9),(10) Flow
straighteners. (11) Flow turning vanes. (12) Vibration isolator. (13) Exhaust plenum.
(14) Vibration isolator. (15) Support plate.
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Fig. 2.2: Overall view of the Alford force test facility, side view. (1) 100 hp electric

motor, (i) Compressor, (3) Heat exchanger, (4) Flow straightener, (5)

Vibration isolator, (6) Test section, (7) Exhaust plenum, (8) Test stand, (9)

Slipring assembly, (10) Vibration absorbing mounts, (11) Flexible shaft

coupling, (12) Drive belt, (13) Pulley sprocket, (14) DC motor/generator
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(1) Flow straightener

(2) Screen

(3) Main loop piping

(4) Flange

(5) Flexible insert

(6) Liner

(7) Snubber bearing

(8) Snubber support

(9) Test turbine

(10) Downstream flow-smoothing shield

(11) Dynamic shakers

(12) Rotatable casing

(13) Stator blades

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Rotating dynamometer

Flexible shaker support

Turbine-offsetting rods

Upper flex joint

Optical encoder
Intermediate shaft

Double-acting seal
Flexible insert

Pivoting bearing

Slip ring assembly

Lower flex joint

Fig. 2.3: Turbine test section and transmission assembly
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carries the stator and hub (which is itself supported by the stator blades, attached to

the casing). The turbine shaft connects to the turbine via the four-legged

dynamometer (Part 14), and is supported by two bearings, of which the lower is a

preloaded opposing pair which carries the axial load. The bearings themselves are

carried in a heavy cylindrical structure which can be translated sideways by means of

four stiff horizontal rods, two on each side. The rods slide on linear bearings, housed

in the "Lower Section" of the casing (see Fig. 2.3). Static offsets are achieved by the

systematic insertion and removal of calibrated metal shims between the casing and

the large connecting vertical bars. For dynamic offsets, the shims are removed, and

two counter-rotating synchronized rotating mass shakers (Part 11) are activated.

The test section rests on a heavy steel plate, under which hangs the flow dump

plenum (a square aluminum box). The plenum connects to the downstream piping

through a flexible insert, and also carries the intermediate section of the turbine shaft

through a double-acting seal which allows a slight pivoting action. The optical

encoder is located inside the plenum (Part 18).

By disconnecting the upper section upper flange, the lower plenum exit flange,

and the lower shaft flex coupling, the entire test section can be translated sideways on

rollers located under the base plate for loop opening. After this operation, and

removal of the flow probes, the upper casing can be lifted, exposing the turbine. The

entire operation of opening or closing the loop can be accomplished (after some

practice) in about two days.

Figure 2.4 shows in detail the upper test section, including stator, turbine,

dynamometer and rotatable casing. Notice the flow-smoothing cylindrical surface

placed immediately downstream of the turbine, and flush with its inner radius. The

stator can be mounted in three different sets of holes in the casing (16 in Fig. 2.4),

allowing for adjustment of the stator-turbine axial gap. For any such mounting, the gap

between the stator hub and the turbine hub can be changed by inserting appropriate
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Fig. 2.4 : Turbine test section, upper section. (1) Upper flange, (2) Rotatable easing seal,

(3) Rotatable casing bearing, (4) Rotatable casing, (5) Ogive, (6) Electrically

insulated snubber bearing, (7) Stator blades, (8) Rotor, (9) Rotating

dynamometer, (10) Square posts where strain gauges are attached, (11) Upper

drive shaft, (12) Lower flange, (13) Location of upper torque strain gauge

bridge, (14) Chain for rotating casing, (15) Hollow shaft for instrumentation

wires, (16) Three axial locations for stator retaining screws
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TABLE 2.1

DESIGN PARAMETERS FOR SSME FUEL TURBOPUMP FIRST STAGE

AND ALFORD FORCE TEST FACILITY TURBINE

Flow coefficient,

Work coefficient,

Stator exit angle

Relative rotor inlet angle

Rotor exit angle

Absolute exit angle

Degree of reaction

Rotor mean radius, cm (in)

Number of rotor blades

Rotor blade height, cm (in)

Rotor blade chord, cm (in)

Rotation rate, rpm

Axial flow vbelocity, m/s (in/s)

Mass flow rate, kg/s (slug/s)

Inlet pressure, kPa (psi)

Inlet temperature, K (°F)

Pressure ratio

Efficiency

SSME Fuel Turbopump,

First Stage

0.58

1.508

70 °

43.9 °

60 °

-3.1 °

0.216

12.88 (5.07)

63

2.17 (0.854)

2.21 (0.870)

34,560

262 (10,300)

71.8 (4.92)

34,950 (5069)

1053 (1436)

1.192

0.821

Alford Force Test

Facility Turbine

0.58

1.508

70 °

43.9 °

60 °

-3.1 °

0.216

12.88 (5.07)

63

2.17 (0.854)

2.21 (0.870)

3440

26 (1020)

4.48 (0.307)

224 (32.43)

300 (80)

1.231

0.75
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rings (mounting screws shown in the figure).

The test turbine used for the unshrouded configuration tests is a 1:1 replica of

the shuttle HPHTP first stage. The dimensions, nominal aerodynamic parameters, and

other flow characteristics are detailed in Table 2.1 for the test turbine and for the

HPHTP. As indicated in the table, all the non-dimensional flow parameters (except

those related to compressibility) are duplicated. The specific heat ratio 7 is

substantially different, however, and so is the Mach number (0.414 maximum in the

test section vs. a smaller value in the HPHTP). These differences are of no

consequence, however, because at these low Mach numbers, compressibility effects

play an insignificant role. The compressor exit Reynolds number is 5.6x10 6 in the

HPHTP vs. 1.4x10 6 in the test turbine. This may imply some loss of efficiency in the

test turbine, but no qualitative flow differences.

In contrast to the rotor, the stator differs from that of the HPFTP in that twist was

eliminated, using a design with the mean blade angles of the HPFTP stator. This had

a major reduction impact on cost and complexity. It was judged that the slight

performance loss to be expected was unlikely to affect the value of the Alford force

data because the stator has no gap and the blade height/radius ratio is small. There

can be a slight shift of the best operating point towards higher speeds (lower flow

coefficients) due to the local increase of the stator blade angle near the tip, but data

were to be obtained over a range of flow coefficients in any case.

The modifications made to the AFTF facility for dynamic testing will be

discussed in Section 8. Instrumentation and data reduction are discussed in Section

2.31

2.2 The Labyrinth Seals Test Facility (LSTF)

This smaller facility was dedicated to a study of the static and dynamic radial

forces acting on large diameter, single-cavity labyrinths similar to those used to seal

22



the flow around the shroud band of shrouded turbines. The relative simplicity of the

geometry and construction, plus the fact that no direct force sensing is necessary,

allowed a good deal of flexibility in varying several important operating parameters.

Chief among these are inlet swirl angle, rotor whirling speed, rotor spin rate,

gap/length ratio, and nature of the land surface.

Details of the design philosophy are given in Refs. [4], [9], and [10]. Efforts were

made to place at least some of the test conditions above the laminar/turbulent

transition for the knife-edge throttlings, and to avoid excessive momentum carry-over

to the second throttling, by using realistic length/gap ratios. The pressure ratio was

kept moderate, below choking, as is the case for the turbines in the SSME, but choked

conditions can also be obtained. The working gas is air, and the main data are time-

resolved pressure measurements at four points in the labyrinth gland. The driven whirl

is used to ensure that each of the pressure measurement points samples the complete

eccentric pressure pattern. Thus, the rig is not capable of directly measuring cases

with zero whirl, but can deal with small positive or negative whirls, from which

extrapolation to zero is simple. A concurrent theory development effort provided a

linearized model which can be used to rationalize and extrapolate the results.

The general flow path in the facility is shown in Fig. 2.5. As indicated, operation

is in open loop, with air discharging to the room through a muffler. Figure 2.6 is a side

view of the test section assembly. Two drives are noted: one, in line, provides the spin

motion, the other, driven by a belt, provides the whirl by producing a small satelliting

motion of the shaft bearing support assembly. Air is admitted to a plenum (Fig. 2.7),

from which it discharges through convergent swirl vanes or holes into the test labyrinth

inlet channel. The swirl vanes can be changed to provide nominal discharge angles

of 0 °, 15 °, 30 °, 45 °, and 60 ° (for 0° and 15 °, holes are used instead of vanes).

The test seal (6 in Fig. 2.7) is mounted on one of two disks (9), the second of

which serves as a balancing mass. Auxiliary axial seals are also shown in the front
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and back of the test rotor. Pressurized air is admitted to the cavity behind the test rotor

for partial balancing of the axial load. Careful control of this pressure is needed to

avoid either bearing seizure or axial chattering.

The right side of Fig. 2.7 details the drive mechanism. The large diameter outer

bearings run concentrically inside the outer housing. The shaft bearings are mounted

with a small, controllable eccentricity on the intermediate structure (part 1 in Fig. 2.7),

which is belt-driven to produce whirl. Weights are placed eccentrically on the

intermediate structure such that, at each eccentricity setting, the inertial axis is still near

the geometric center of the outer casing.

Two different seal lengths (10 mm and 17.3 mm) were tested, each with a

smooth and a honeycomb land surface. Further details will be given in the Results

section.

2.3 Instrumentation and Data Acauisition (AFTF)

Figure 2.8 shows the general arrangement of the data acquisition system. As

noted in the introduction, three digitizers are used: one for low frequency data

(thermocouples and loop status signals), a second for the real-time recording of

dynamometer data (plus torque data from a shaft-mounted bridge), and a third one

directly attached to the scanivalve system. All data are transferred during each run to

the hard disk of the PC-AT lab computer, and periodically loaded to diskettes for later

analysis.

The major instruments and the general data reduction procedure for each of

them will be next discussed. Details which are specific to the extraction of particular

pieces of information will be more fully discussed in the sections dealing with the data.

2.3.1 Force Dynamometer

The rotating dynamometer (part 9 in Fig. 2.4) consists of four instrumented

flexible posts which directly support the turbine. The locations of the attached strain
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length, MK and 4 at three-quarter length, XK2. Forces and moments

shown are defined as acting on the rotor, at the rotor end of the

dynamometer.
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gauges are shown in Fig. 2.9. As noted, all three force components (two bending, one

torsion) can be extracted. The gauges are arranged into a set of 9 full wheatstone

bridges, each of them yielding an output which is primarily sensitive to only two

components of force or moment, and secondarily (about 2 orders of magnitude less) to

the other components. The exception is Bridge 9, sensitive primarily to thrust only.

The output wires are permanently connected to the bridges and cemented in

place as they exit through the hollow turbine shaft. At the other end, they connect to a

set of slip rings keyed to the intermediate shaft and located outside the exit plenum,

just above the removable lower flex joint (part 9 in Fig.2.2).

The six forces and moments can be extracted from a selection of six of the

bridge outputs, through a calibration matrix, the elements of which are determined by a

series of calibration experiments. These are described in Ref. [4], and will not be

repeated here. The calibration included dynamic Ioadings as well, which verified the

insensitivity to frequency in the desired range. The errors in reconstructing a known

load through the calibration matrix were under 2% for all Ioadings and speeds.

The bridge data are sampled 32 or 64 times per turbine revolution using clock

signals which are provided by the optical encoder. The data sequence is referred to

rotor orientation by means of a once-per-turn pulse also provided by the encoder at a

known turbine position. Occasionally the encoder malfunctioned, and then the clock

signals were derived from the proximeter which senses the passage of each individual

turbine blade (63 of them); for compatibility with the rest of the data reduction process,

these data were then interpolated to a 64-per-turn format. When clocking was from the

blade proximeter, a second proximeter was used to provide a once-per-turn

synchronization signal by sensing passage of a protuberance attached to the lower

shaft.

Low frequency fluctuations occur, due both to flow fluctuations and to low

frequency system vibration. Their impact is minimized by averaging 128 or 256
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consecutive revolutions (2 to 5 seconds), using the synchronization signals for proper

phasing. This volume of data can be accommodated in the dynamic memory modules

of the Le Croy digitizer, which is read into computer disk after each acquisition.

The type of azimuthal variation encountered, and the magnitude of the low

frequency fluctuations, can be appreciated in Figs. 2.10(a), (b), and (c). Figures

2.10(a) and (b) show the raw output (in volts) of one of the strain gauge bridges. The

intra-cycle pattern is recognizable from turn to turn, but there is clearly a large slow

fluctuation superimposed. Averaging over 256 cycles produces the azimuthal

variation shown in Fig. 2.10(b). We have verified that averaging over any number of

cycles greater than about 30-60 produces negligible differences as to the averaged

signal. After this is done to each bridge signal, multiplication times the calibration

matrix yields force components in the rotating frame such as those in Fig. 2.10(c),

where F 1 and F 2 are force projections on two axes fixed to the turbine at a well

defined, but arbitrarily chosen, orientation.

The next step in the reduction is to project the forces onto the fixed frame (XY), ..

where X is the direction of the turbine offset, and Y is at 90 ° to it. This operation

requires accurate indexing to fix the time when the (1-2) and the (XY) axes coincide.

The result for our example is shown in Fig. 2.11 (a). It is apparent that, in addition to

the average values of Fx and Fy (0 th harmonics), which is what one would expect from

a static deflection along OX, there are strong higher harmonics, particularly a 2 nd

harmonic. These harmonics are then eliminated by simply averaging over the

revolution to extract the desired Fx and Fy averages, which are shown in Fig. 2.11 (b).

The harmonics appear to be related to the necessary presence of slight deflections in

the flex couplings at the bottom of the shaft.

The force level shown in Fig. 2.11 (b) (1-3 Ibs) is typical of what is obtained for

deflections of 10-15 thousandths of an inch. They are generally linear in the turbine

deflection. The departures from linearity which are seen in Fy(e) curves, in particular,
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do not have a repeatable pattern, and are more a measure of the residual

measurement error than of any basic physics. Figures 2.12 and 2.13 are

representative of the best and worst linearity in our Fy data.

Figures 2.12 and 2.13 also display the Fx ("Direct Force") component of force.

Here, the slight S-shaped curve is visible, and appears to be a consistent feature in all

cases. In terms of repeatability, notice that three different measurement points are

given in Figs. 2.12 and 2.13 for each eccentricity. The separate symbols are nearly

indistinguishable in the graphs. A fuller discussion of the dynamometer data must

await Sections 4-6.

2.3.2 Instrumentation for Flow Measurements

The location of the instrument ports for flow measurements is detailed in Fig.

2.14a. The type of instrument used at each station is explained in Fig,:. 2.14b o

The static wall taps at stations 0, 1,3, 4, 5, 6, 7, 8, 9, and 10 are simple 0.5 mm

holes drilled through the wall, backed by 1/8" brass tubes to which several meter

lengths of flexible plastic tubing attach. This tubing ends at separate ports on the

Scanivalve pressure multiplexer.

The three-hole probes (two each in stations 1 and 9) are wedge-shaped, with

one central and two lateral holes, to measure the magnitude and yaw angle of the

relative flow, plus a thermocouple for total temperature sensing. The five-hole probes

(two each at stations 2 and 8) are similar, but have additional slanted surfaces with two

more holes for sensing flow pitch angle. The probe diameter is about 3 mm.

Subsequent to the issuance of Ref. [4], all of the three- and five-hole probes

were mounted on traversing devices which allow radial scanning, as well as rotation

about the probe axis (yawing). These devices are as shown in Fig. 2.15. The five-hole

probes have their sensing holes displaced by 16 mm from the probe tip, with the result

that only the outer 7 mm of the flow passage can be scanned. This is not a serious
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problem, because the tip-induced flow underturning is very small in the inner half of

the passage. The three-hole probes, on the other hand, can scan all but the bottom 6

mm of the passage.

The normal mode of usage of these probes is to align them to the flow by

zeroing the pressure differences between side holes. • This would be cumbersome in

our experiment, and we opted instead for placing each probe at an angle near the

middle of the expected flow angles, and recording the side-to-side and upper-lower

hole pressure differentials. This required a separate calibration experiment, which

was performed in the Wright Brothers Wind Tunnel. The three-hole probes were

calibrated in the yaw range of +30 °. The five-hole probes were calibrated in +10 °,

except for one, which was also calibrated to +30 ° . The calibration data are included in

Appendix 2A for reference. Occasionally, the data from a five-hole probe calibrated to

+10 ° exceeded this range. In such cases, the one +30 ° calibration curve .was used

instead.

The 16 pressure lines from the multi-blade probes were also routed to the

Scanivalve. The arrangement of the full set of static tap and probe pressure lines is

detailed in Ref. [4]. Frequent recalibration of the pressure transducers was made with

respect to a model 398 Baratron precision transducer.

The manner in which the data from these instruments was analyzed is best

described in connection with the data themselves (Sections 4.3 and 5.2).

2.3.3 Other Instrumentation

Induction proximeter probes (Ref. [4]) were used to sense the passage of each

individual blade tip for clocking purposes. These also provided rotor displacement

information during dynamic tests. For static tests, calibrated shims were used, as

noted before. These were verified against measurements made with the rotor stopped

by means of a micrometer depth gauge inserted through holes in the casing.
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Turbine torque is sensed by means of strain gauge bridges at two locations on

the shaft, one above and one below the bearing set. The upper location has the

advantage of being free from bearing friction uncertainties, but, because of the

stiffness of the upper shaft section, its sensitivity has proven insufficient. The lower

sensor, located on the thinner middle shaft, has adequate sensitivity, but it measures

turbine torque minus bearing friction. Bearing friction tare can be removed by running

the turbine in vacuum using the DC generator as a motor. Any reading on the lower

torque gauge is then due to the bearings. This procedure suffers from the defect that

the actual running conditions on the lower bearing set include the full axial thrust

(approximately 2000 N = 440 Ib) under which the frictional force may be different than

with no axial load. Calibration at full load and running conditions was not feasible.

Instead, we have performed static calibration tests under axial loads (weights) up to

310 Ib, with the result that axial load effects are negligible in this range (less than

0.1%). The procedure is therefore to correct the torque calibration data only for the

vacuum friction effects. The results are given in Appendix 2B.

The instruments and calibrations used for flow and other status data can be found

in Ref. [4].

2.4 Instrumentation and Data Acquisition (LSTF)

The major data from the Labyrinth Seals Test Facility were the time-dependent

gland pressure data from the four Kulite transducers. These, as well as their

calibration and reference arrangements, were fully discussed in Ref. [4]. Also

discussed were the proximeters, flow and pressure sensors, and speed and frequency

counters.

The only important addition since January 1990 was the hot wire anemometry

instrumentation used to directly measure the gland exit swirl velocity. This was a

single-wire arrangement. The wire (0.005 mm thick and 1.6 mm long) was placed 1
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Appendix_A

This appendix describes the calibration procedure for the 3 and 5-hole-probes.

Each 3 hole probe was calibrated at zero pitch angle for yaw angle values from -25 to +25

degrees in 5 degree increments. Figure A1 shows the nondimentsional pressure

coefficients for yaw anle, total pressure, and static pressure vs yaw angle for a typicla 3-

hole probe. For 5-hole probes the nondimentsional pressure coefficients for pitch angle,

yaw angle, total pressure, and static pressure were taken for a combination of yaw-pitch

angles. Both the pitch and yaw angles were varied from -10 to +10 degress in 5 degree

increments. Finally, one 5-hole prob_ was chosen for calibration over a wider range, and

was calibrated for pitch and yaw anlges from -30 to +30 degrees in 10 degree increments.

The data can be seen in Figure A21
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Appendix_B

This appendix contains lower torque bridge calibration data. Torque bridge was

calibrated by hanging equal weights at diametrically opposed locations about the shaft.

The loading values were 1.2, 41.2, 81.2, 121.2, 161.2, 193.2, and 225.2 in-lbf. These

loadings were repeated under various thrust loads. Figure B 1 shows torque calibration

data under thrust loads of 0, 78, 105, 167,220, 269, 309 lbf. There is no measurable

difference in the slope. Then the shaft was spun in vacuum at various speeds to evaluate

the effects of bearing friction on the torque reading. As seen in B2, no correlation with

speed exists
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mm downstream of the seal discharge, and could traverse radially across the width of

the discharge jet, as well as rotate inside the plane of the jet, i.e, while remaining

parallel to the casing surfaces. Measurements were made at 20 ° intervals about the

approximate maximum reading, covering +40 °, then a sine curve was fitted to the data,

and the maximum was thereby located more precisely. This maximum indicated the

flow direction to within 1°, as determined by calibration tests in a well-defined jet, and

also in the facility at zero speed, whirl and swirl.

3.0 Parameters Investiqated and Test Matrix

3.1 AIford Force Test Facility

Figure 3.1 shows the geometrical parameters that were varied in the AFTF rig.

The nominal values were:

H = 22.8 mm (blade height)

c = 21.4 mm (mean axial chord, not varied)

d = 10.6 mm (d/c = 0.50)

d'= 8.2 mm (d'/c = 0.38)

tm = 0.68 mm (trn/H = 0.030)

e = _+0.46 mm (e/H = +2.0%, eccentricity)

No shroud

In terms of operating parameters, the nominal conditions were:

m = 4.48 kg/sec

= 2 atm (mean loop pressure, Freon 12)

T =_295 K

co = 3440 RPM (spin rate)

= 0 (shaking or whirl rate)

The variations on these parameters for which data were obtained are summarized in

Table 3.1.
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Turbine
casing .._

Gap
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Rotor hub
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Fig. 3.1: Schematic showin_ major dimensions of

interest for the test turbine
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TABLE 3.1

UO

5

6

tm/H
% [dlcld'/c[Shroud%% (YAN) r/l/IriDES% °)/(°DES%

3.0 50 38 N 50 100

100 70

100 100

100 110

100 70

100 100

100 110

3.0 26 15 N 100 70

100

110

3.0 26 1.3 N 100 70

100

110

1.87 26 15 N 100 70

_m=0.43mm) 100

110

1.87 26 1.3 N 100 70

100

110

4.5 26 1.3 Y 100 70

100

110

e/t m n/o3 F

Range, % Range, % (atm)
Forces Flow Map
(Y/N) (Y/N)

-67/+67 0 1 Y N

2 Y Y

2 Y Y

(e---__0.46mm) 2 Y Y

40/80 2 Y N

40/60 2 Y N

40/55 2 Y N

-67/+67 0 2 Y N

Y Y

Y N

-67/+67 0 2 Y N

Y N

Y N

-59/+59 0 2 Y N

(e---&0.25mm) Y Y

Y N

-59/+59 0 2 Y N

Y Y

Y N

-59/+59 0 2 Y N

Y Y

Y N



For the nominal geometry (called Configuration 1), the operating parameters

were varied over a fairly wide range: mass flow and mean pressure were

simultaneously reduced by 50%, speed was varied from 70% to 110% of nominal, the

eccentricity was statically varied between -2.0% and +2.0% of chord (i.e., _+67% of

mean tip gap), and tests were run in air instead of Freon 12. For each of these

conditions (except the air and the low P tests), both force and flow mapping data were

acquired. In addition, tests were done under dynamic (shaking along one axis)

conditions, with shaking frequency in the range of 40% to about 80% of spin rate. In

these dynamic tests, only force measurements were attempted.

Configuration 1 featured, as noted, fairly large axial gap values (this was

intentionally done to minimize the risk of rubbing, since the final axial gap is the most

uncertain dimension during assembly). Also, the Shuttle HPFTP turbine has d/c _=_

0.36, not far from our values. The first variation (Configuration 2) consisted of

mounting the stator 5.6 mm closer to the rotor, using the lower set of stator blade

mounting screw holes. This reduced both d and d' (Fig. 3.1) simultaneously. A full set

of turbine speed variations, and in each case, of static eccentricity variations, was then

executed. Force data were taken in each case, while flow mapping was done at zero

and (+/-) maximum eccentricity, but only at nominal turbine speed.

The third variation (Configuration 3) involved insertion of a ring between the

stator and rotor hubs, such as to reduce d' to as nearly zero as practicable, while

leaving d unchanged. The same set of speed and static eccentricity conditions as in

Configuration 2 was then repeated. Force data were obtained in all cases, but flow

mapping data were inadvertently lost due to a bad connection (which was only noticed

after the configuration had been changed by enlarging the blades, see below).

For Configuration 4, the turbine blade tips were chromium-plated (by

approximately 15/1000 of an inch, or 0.38 mm), and then ground back to a net addition

of 10/1000 of an inch (0.25 mm). This left a mean blade-tip gap of 0.43 mm, or 1.87%

_i.'
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of blade height. The axial gaps were as in Configuration 2 (axial insert ring removed).

Because of the loss of flow data for Configuration 3, it was not possible to

assess the effect on flow details of reducing the hub gap alone (although this

assessment was still possible in terms of net forces). For this reason, Configuration 5

was added to the original test plans. This configuration differs from Configuration 4

only in the re-insertion of the axial ring to reduce d' to a minimum. The full set of force

data were acquired, plus complete flow maps at the nominal turbine speeds.

Throughout the preceding set of configurations, the turbine remained

unshrouded, thus faithfully reflecting the conditions on the Shuttle HPFTP (first stage)

turbine. There is also interest in the radial forces on shrouded turbines, similar to

those used in the HPOTP. Rather than attempting again a good 1:1 match to that

turbine (which would have entailed substantial re-design of the rig), it was decided, in

consultation with cognizant NASA personnel, to modify the same turbine used in the

previous tests by the addition of a shroud band; fitted with suitable sealing strips. This

is our Configuration 6 (Table 3.1). The detailed geometry of the shroud and seal will

be discussed in Section 6. The tests once again included force data and flow

mapping for design and off-design conditions. In addition, gland pressure data were

also acquired (both low frequency, as in the other configurations, and also real time,

for comparison to LSTF data).

The above test matrix encompasses all of the parameters that were identified as

potentially significant in our preliminary investigations (Reports for Phases I and II,

Refs. [3] and [4]). The major shortfall with respect to the test plans that were formulated

at the end of Phase II occurred in the area of dynamic offset testing. As indicated, this

was only done for Configuration 1, with results which, as will be discussed in Section

8, were not satisfactory. This was in spite of a strong effort in this area, which

consumed a disproportionate fraction of our time and resources. A consequence of

this disproportionate attention to the dynamics part of the test plan was the need to
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reduce somewhat the number of variations of each of the other parameters, from the

originally planned three to, in most cases, only two. The results indicate that the

parametric sensitivities are not large and the trends are consistently identified, despite

the limited number of variations.

3.2 L{lbyrinth Seals Test Facility

The general geometry of the labyrinth seals used in this investigation is shown

in Fig. 3.2. Five different configurations were built and tested. These are detailed in

Table 3.2.

Builds 1 and 2 are geometrically very similar, Build 2 being an improved version

of Build 1. Both are "short" seals, with the ratio (I tan 6°)/B *, which characterizes the

spreading of the jet from the first gap in relation to the width of the second gap, being

only 1.44. The land surface is smooth, and knife edges are sharp.

-, / /"

Pi ,V

JJ//////1111,/f/I,//1It11/.//I/t//

81
ql q2

P,p,V

Po
£

¢_

Fig. 3.2 Cross-section of seal; geometry and flow variables are Nven

i_:I.
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Build

#1

#2

#3

#4

#5

TABLE 3.2
SEAL AND LAND GEOMETRY FOR THE 5 DIFFERENT BUILDS

Seal Dimensions (Rotor)
cm
in.

Materia , I hl I (XsI °
4140 15.16 1.016 0.508 0

steel 6 0.400 0.200 0 20 °

'5.971

4140 15.16 1.016 0.508 0

steel 6 0.400 0.200 0 20 °

5.971

304 15.17 1.727 0.508 0.043

SS 7 0.680 0.200 0.017 17 °

5.975

304 15.17 1.727 0.508 0.043

Land Dimensions (Stator)
cm
in.

 atena'I I I
1117 15.240! 0 0

steel 6.000 0 0

1117 15.245

steel 6.002

51"

1117 15.245

steel 6.002

304 SS

SS 7

5.975

4140 15.16 1.016 0.508

steel 6 0.400 0.200

5.970

0.073

7

0.029

0 0 0.078

0 0 7

0.031

0 0 0.068

0 0 6

0.027

15.245 0.483 1.905 0.068

0.680 0.200 0.017 17 ° HastelloyX 6.002 0.190 0.750 6

0.027

0 304 SS 15.245 0.483 1.905 0.078

0 17 ° Hastelloy X 6.002 0.190 0.750 7

0.031

R s = seal mean radius

I = distance between knife edges (seal length)

h I = seal depth

d = knife edge width at tip

o_s = knife edges, included angle

Cs = casing (land) diameter

h 2 = honeycomb width

Is = length of honeycomb section

51. = mean seal gap

Build 3 is a longer seal (I tan 60/5 * = 2.65) with the knife edges slightly flattened.

The land is still smooth.
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47

f

II P ESS R R*T*O.SP, SPEEOS W , LSPEEOSoII
(7.3) 4-7.57, ±14.12, ±20.10

0.2517 O°plate 1.00 0 4-26.18, +32.29, 4-40.53

(7.3) 4-7.11, +14.72, +21.99
0.2517 0°plate 1.21 0 4-25.87, 4-33.85, 4-40.03

(7.3) 4-1-8.08, 4-14.98, 4-4-21.76
0.2517 0°plate 1.32 0 +26.87, 4-33.73, -4-40.98

(7.3) 4-7.08, -4-14.73, 4-21.95
0.2517 0°plate 1.44 0 4-26.98, -4-33.93, 4-40.05

(7.3) +7.64, 4-14.98, -I-21.79
0.2517 0°plate 1.68 0 4-26.61, 4-33.03, 4-40.94

(7.3) +20.11, +27.50, +32.97 4-7.53,-4-14.29,-4-20.03

0.2517 O°plale 1.32 +45.00, +57.02 4-26.94,4-32.24,4-40.49

(7.3) -20.87,-27.07,-33.05 4-8.00,4-14.52,4-20.11
0.2517 O°plate 1.32 -44.91,-57.03, 4-26.21,4-32.07,4-40.45

(7.3) +20.48, +28.20, +32.05 4-8.59,4-14.20,4-19.59

0.2517 O°plate 1.44 +44.36, +57.11 +26.18, 4-32.22, 4-40.43

(7.3) -20.07, -27.33,-33.83 4-7.04, 4-13.87, 4-20.88
0.2517 0°plate 1.44 -44.06,-57.41, 4-26.48, +32.37, 4-40.65

(7.3) 4-8.48, 4-15.02, 4-20.58
0.2517 45 ° 1.00 0 4-26.07, 4-32.42, 4-40.90

(7.3) 4-7.34, 4-14.81, 4-20.75
0.2517 45 ° 1.21 0 4-26.03, 4-32.21, 4-39.04

(7.3) 4-7.76, 4-14.71, 4-21.84
0.2517 45° 1.32 0 4-26.48,4-32.44,4-39.69

(7.3)
0.2517 45 °

(7.3)
0.2517 45°

(7.3)
0.2517 45 °

(7.3)
0.2517 45°

(7.3)
0.2517 45 °

(7.3)
0.2517 45 °

1.44

1.68

1.32

1.32

1.46

1.46

4-7.29,4-14.48,4-20.29

0 ±26.19, 4-32.34,-4-42.19

4-7.26,4-14.21,4-20.25

0 4-27.87,4-32.24,4-39.03

+20.34, +27.54, +32.87 4-7.05,4-14.98,4-20.35

+44.87, +57.87 4-26.97,4-32.34,4-40.08

-21.03,-27.07,-33.35 4-6.99,4-14.23,4-20.87

-44.47,-56.34, 4-26.38,4-32.42,4-40.15

+20.34, +28.09, +32.65 4-7.07,4-13.95,-4-21.24

+44.96, +57.87 4-26.88,4-32.98,4-40.94

-20.47,-27.35,-33.75

-43.96,-57.49,

4-7.18,4-14.47,4-20.37

4-26.58,4-32.37,4-39.89

:/

TABLE 3 •3 : Test matrix for build #i. For

combinations on a given row of
^
r = seal offset.

geometry see Table 3.2. All

the matrix were tested.
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VANE

ANGLE

PRESSURE RATIO I SPIN SPEEDS

I (Hz.)

WItlKL SPEEDS

n (H,.)

(7.3) 1.47, 1.54, 1.61
0.2355 O°plate 1.68, 1.75, 1.89 0

(7.3) +7.06,

0.2355 O°pla_e 1.61 21.34, 43.90, 65.01

1.61

1.75

(7.3)
0.2355

(7.3)
0.2355

(7.3)
0.2355

O°plate

O°plate

O°plate

(7.3)
0.2355 15°plate

(7.3)
0.2355 15°plate

(7.3)
0.2355 15°plate

-22.44, -43.43, -64.93

22.57, 44.53, 65.73

-21.67, -43.53, -65.201.75

"4-7.06, "4-14.22, +21.07

"4"26.18, "4"32.45, 4"40.98

4"14.22, 4"21.07

±26.18, ±32.45, 4"40.98

4"7.06, 4"14.22, 4"21.07

"4-26.18, 4.32.45, "4-40.98

+7.06, 4.14.22, 4"21.07

±26.18, ±32.45, 4"40.98

"4-7,06, 4.14.22, ±21.07

"4"26.18, ±32.45, ±40.98

1.47, 1.54, 1.61

1.68, 1.75, 1.89

±7.06, ±14.22, 4.21.07

4.26.18, -4-32.45, +40.98

±7.06, ±14.22, 4.21.07

±26.18, ±32.45, 4.40.981.61 22.14, 43.71, 65.98
4.7.06, ±14.22, ±21.07

1.61 -22.23,-42.45, -65.33 4"26.18, 4"32.45, 4"40.98

(7.3) ±7.06,
0.2355 15°pla_e 1.75

(7.3)
0.2355

(7.3)
0.2355

(7.3)
0.2355

15°pla_e

30 °

30 °

1.75

1.47, 1.54, 1.61

1.68, 1.75, 1.89

1.61

22.03, 44.97, 67.23

'21.06,-41.13,-65.29

21.54, 44.18, 67.36

±14.22, ±21.07

±26.18, ±32.45, 4"40.98

4.7.06, 4"14.22, ±21.07

4"26.18, ±32.45, 4"40.98

4"7.06, ±14.22, "4-21.07

4"26.18, 4"32.45, 4"40.98

"4-7.06, 4"14.22, 4"21.07

4"26.18, "4-32.45, 4.40.98

(7.3) ±7.06, 4.14.22, 4.21.07
0.2355 30 ° 1.61 -22.03,-43.93,-65.13 "4-26.18, 4"32.45, 4"40.98

(7.3) 1.47, 1.54, 1.61 ±7.06, 4"14.22, 4"21.07
0.2355 60 ° 1.68, 1.75, 1.89 0 ±26.18, 4"32.45, ±40.98

(7.3) ±7.06, 4"14.22, 4"21.07
0.2355 60 ° 1.61 21.48, 43.50, 64.91 ±26.18, ±32.45, 4"40.98

(7.3) ±7.06, ±14.22, ±21.07
0.2355 60° 1.61 -22.38,-43.00,-64.49 ±26.18, 4"32.45,+40.98

(7.3) ±7.06, 4"14.22,±21.07
0.2355 60° 1.75 21.03,44.93,65.35 ±26.18, 4"32.45,4"40.98

(7.3) ±7.06, 4"14_22_+21.07

0.2355 60° 1.75 -21.67,-43.53,-65.20 ±26.18, 4.32.45,4"40.98

(7.3)
0.2355 O°plate

(7.3) 1.47, 1.61
0.2355 15°plate 1.75

(7.3) 1.47,1.61
0.2355 30° 1.75

60°
(7.3)

0.2355

4"7.52, 4"20.87

±33.17, 4"48.15O

±7.52, ±20.87

0 4-33.17,-4-48.15

4"7.52,4"20.87

0 4.33.17,±48.15

±7.52, ±20.87

±33.17, 4.48.15

Table 3.4 Test Matxix for build #2.
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(i.o)
0.0370

(1.0)
0.0370

(1.0)
0.0370

I VANE PRESSURE RATIO SPIN SPEEDS WHIRL SPEEDS IANGLE _r. w (Hz.) a (Hz,) I
1.27, 1.38, 1.46 4-7.52, 4-20.87

0Oplate 1.65, 1.83 0 4-33.17, 4-48.15

15°plate

30 °

1.25, 1.39, 1.42

1.65, 1.84

1.27, 1.38, 1.44
1.66, 1.82

0°plate

(1.0) 1.25, 1.40, 1.46
0.0370 60 ° 1.66, 1.85

1.13, 1.21, 1.27

1.38, 1.48, 1.65
(3.8)

0.1407

(3.8)
0.1407 0°plate

1.73, 1.79, 1.94

2.07, 2.29, 2.40

0

0

0

0

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

(3.8) 4-7.52,
0.1470 0°plate 1.48 4-44.87, 4-66.52

(3.8) 1.24, 1.40, 1.55
0.1470 15°plate 1.64, 1.81 0

(3.8)
0.1407 15°plate 1.55 4-44.87, 4-66.52

(3.8) 1.23, 1.38, 1.55
0.1470 30 ° 1.66, 1.76 0

4-20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

4-33.17,4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

(3.8) 4-7.52,
0.1470 30 ° 1.55

(3.8) 1.11,1.19,1.23
0.1407 60 ° 1.38, 1.55, 1.66

2.02

2.38
(3.8)

0.1407

(3.8)
0.1407

60 °

60 ° 1.54

4-20.87

4-33.17,4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, 4-20,87

4-33.17, 4-48.150

4-7.52, 4-20.87

4-44.87, 4-66.52 4-33.17, 4-48.15

(7.3) 1.20, 1.38, 1.58 4-7.52,

0.2704 O°plate

(7.3)
0.2704

(10.7)
0.3963 0°plate

(10.7)
0.3963 60 °

(13.i)

0.4852 O°plate

(i3.i)
0.4852

(13.1)
0.4851 30 °

(13.1)
0.4851 60°

15°plate

15°plate

1.67, 1.88

1.21, 1.38, 1.55

1.67, 1.93

1.23,1.39,1.52

1.65,1.79

1.25, 1.40, 1.46

1.66, 1.85

1.27, 1.38, 1.46

1.65, 1.83

1.25, 1.39, 1.42

1.65, 1.84

1.27,1.38,1.44

1.66,1.82

1.25, 1.40, 1.46

1.66, 1.85

4-20.87

0 4-33.17,4-48.15

4-7.52,4-20.87

0 4-33.17,4-48.15

4-7.52,+20.87

0 4-33.17,4-48.15

4-7.52,4-20.87

0 4-33.17,4-48.15

4-7.52,4-20.87

0 4-33.17,4-48.15

4-7.52,±20.87

4-33.17,4-48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52,4-20.87

4-33.17,4-48.15

Table 3.5 Test Matxix for build #3.
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VANE
ANGLE PRESSUREa.,RATIO[

(3.8) 1.08, 1.19, 1.28
0.1407 0°plate 1.43, 1.58, 1.68

(3.8) 1.83, 1.96, 2.02

0.1407 O°plate 2.11,2.21,2.31

OOplate 1.58

15°plate

(3.8)
0.1407

(3.8)
0.1407

15°plate

(3.8)

(3.8)
0.1407

1.25,1.40,1.58

1.65,1.80

1.58

1.25,1.42,1.59

SPIN SPEEDS

(H,.)

0

0

±20.80, ±44.87, -4-66.52

±85.37, ±105.03

±44.87, ±66.52

WHIRL SPEEDS ]fl (Hz.)

±7.52, ±20.87

4-33.17, 4-48.15

4-7.52, ±20.87

4-33.17, 4-48.15

4-7.52, ±20.87

4-33.17, 4-48.15

4-7.52, 4-20.87

±33.17, ±48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

4-7.52, ±20.87

0.1407 30 °

(3.8)
0.1407 30°

(3.8)
0.1407 60°

(3.8)
0.1407 60 °

1.68,1.81

1.59

1.24,1.41,1.56

1.67,1.83

1.56

4-20.80, 4-44.87

±66.52, ±85.37

4-44.87, 4-66.52

±33.17, ±48.15

4-7.52, 4-20.87

4-33.17, 4-48.15

±7.52, 4-20.87, ±33.17

4-48.15, 4-57.37

4-7.52, 4-20.87

4-33.17, ±48.15,

Table 3.6 Test Matxix for build #4.

1 (_-mi]_s) VANE PRESSURE RATIO SPIN SPEEDS WHIRL SPEEDS= _ ANGLE _r, _ (Hz.) fl (Hz.)

(3.8) 1.21,1.32 ±7.52, ±20.87

0.1407 O°plate 1.44 0 ±33.17, 4-48.15

(3.8) 4-7.52,4-20.87

0.1407 O°plate 1.32 ±44.87, 4-66.52 4-33.17,4-48.15

(3.8) 1.22,1.30 4-7.52, 4-20.87
0.1407 15°plate 1.46 0 ±33.17, ±48.15

(3.8) 4-7.52, 4-20.87
0.1407 15°plate 1.30 ±44.87, ±66.52 4-33.17, ±48.15

Table 3.7 Test Matxix for build #5.
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Builds 4 and 5 feature a honeycomb land surface with a depth of 4.83 mm and a

cell diameter of 0.8 mm. The seal is "long" in Build 4, and "short" in Build 5, being the

same as those of Builds 3 and 2 respectively.

The parameters varied for each of these basic configurations, and are given in

Tables 3.3 through 3.7. The seal pressure ratio was in the range from 1.11 to 2.38,

which means that most of the tests were in the unchoked regime. The exit pressure

was in all cases atmospheric. The rotor spin rate varied from 0 to _+65 Hz (3990 rpm),

positive being defined as the inlet swirl direction. The circular whirl amplitude was

kept constant over many runs, with variations (mainly in Build 3) to check linearity. The

whirling speed varied from +7 Hz (420 rpm) to +48.15 Hz (2890 rpm). The nominal

inlet swirl was 0°, 15°, 30 °, 45 ° (Build 1 only), and 60 °.

4.0 Experimental Results for the Basic Confiquration

The basic configuration (Configuration 1 in Table 3.1) was investigated first and

in somewhat more detail than the others. For this reason, this section will be devoted

to a presentation of the Configuration 1 data in greater detail than will be the case for

the subsequent configurations. On the other hand, the quality of the data was in some

respects less good for this than for later cases, because of the cumulative experience

gained during the course of the investigation. Therefore, some of the points will be

better illustrated by particular pieces of data from later configurations (Sec. 5).

Section 4 is organized as follows: first, the basic performance of the (centered)

turbine will be discussed, Next, the radial forces (direct and cross-force) for the

eccentric turbine (static offsets only) will be shown, as derived from dynamometer data.

Following this, the results of the flow mapping upstream and downstream of the turbine

will be shown, and will be processed to obtain independent measures of the radial

forces. Finally, the total radial forces (velocity triangles plus pressure nonuniformity)

will be compared to those measured directly by the dynamometer.

t
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4.1 Tvrbine P_rformance Ma.D

Performance measurements were made to map the turbine. The mass flow was

determined by a Venturi flowmeter. The inlet total pressure and temperature were

measured by a total-static pitot tube with an attached thermocouple. The pressure

drop was measured by directional probes placed at the mean radiusboth upstream

and downstream of the turbine stage. The rotation rate was measured by an optical

encoder.

Figures 4.1 and 4.2 show the dimensional and non-dimensional plot of

pressure ratio versus mass flow for the unshrouded turbine at four different rotational

speeds. Figure 4.3 shows the pressure ratio and the total-to-static efficiency versus

mass flow at the design operating speed (3440 rpm) and shows that the efficiency

peaks around 4.4 kg/s which is close to the design mass flow rate.

4.2 Dynamometer Force Data for the Basic Configuration

Forces were measured directly using the dynamometer, with a variety of shim

combinations to obtain turbine offsets of up to 18 mil = 0.45 mm (gap = 27 mil = 0.68

mm). This was done at the nominal turbine speed of coD = 3440 rpm, plus at 0.7 coD

and 1.1 o0D. Considerable effort was devoted to improving the procedures to ensure

repeatability of data. This involved several re-runs of each condition. The experience

gained in this process proved valuable in expediting the process for the subsequent

configurations.

The static forces obtained (F x along the offset, positive if de-stabilizing; Fy

perpendicular to offset, positive if leading to forward whirl) are displayed in physical

units in Figs. 4.4, 4.5, and 4.6. Three data points are shown for each eccentricity, and

the repeatability is obviously excellent (the individual data points can barely be

distinguished). Linearity is good, especially for Fy, even though the offset was 67% of

the mean gap. The correlation coefficient to a linear fit is from 0.995 to 0.999.
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These data were reduced to mean stiffness data (Fx/e, Fy/e), and then to

coefficient form. The definition of the direct and cross-force coefficients, here denoted

O_xand (/,y, is as suggested by the simple argument leading to Eq. (1.1), namely

O_x= 2F x R,.
Q (e/H) (4.1)

2Fy R

O_y= Q (e/H) (4.2)

where R is the mean radius, Q is the measured torque, e is the turbine eccentricity, and

H is the blade height. The results are given in Table 4.1.

FORCE

TABLE 4.1
COEFFICIENTS FROM DYNAMOMETER-DERIVED

IN CONFIGURATION 1

FORCES

/

O)/O)DE$1_N (/,x GY

0.7

1.0

1.1

-2.12

-2.81

-3.42

2.43

2.57

2.66

The basic independence of these coefficients from turbine power level was

verified by repeating the nominal speed tests at a loop pressure P = 1 atm, with the

flow rate reduced accordingly. To within experimental accuracy, the measured forces

(both Fx and Fy) were one-half those in the 2 atm tests, and hence the coefficients

were the same. The turbine torque was still adequate to overcome frictional losses,

but operation was generally less steady (in part because the blower was forced to

near its stall limit).

The observed independence of cxx, (Xy from pressure is not over a sufficiently

broad range of Reynolds numbers that any conclusions can be obtained about the

effect of that parameter, particularly since in both cases we were well above the range •

of 105 - 2x105 (based on chord and stator leaving velocity) at which transition effects
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are noticeable. The sensitivity of our force sensors is probably insufficient to obtain

reliable data for runs in air (at 1/5 the freon density).

4.3 Survey of Flow Data

The nature and location of the various flow sensors used is summarized in Fig.

4.7. The 3-hole probes at stations 1 and 9, and the 5-hole probes at stations 2 and 8

can be radially traversed (the latter only over the outer 25% of the passage height, due

to interference with the hub). All of the sensors shown, except for those at stations 0

and 10, are carried by the rotatable casing, and can be azimuthally traversed over

_+90°. Thus, two diametrically opposed probes can provide full circumferential

coverage (with some overlap). In sections with multiple wall tap holes, such as

stations 3, 4, and 6, this capability provides redundancy and cross-checking of the

data.

Since the main interest of the survey centers on azimuthal variations due to the

turbine offset rather than absolute values, most of the data to be presented have been

processed by subtracting the corresponding values measured with the turbine

centered. Particularly for the probe data, this procedure has the advantage of

removing residual probe alignment errors, which are difficult to eliminate otherwise.

An example of this is shown in the tangential velocity surveys shown in Fig. 4.8.

Because of the use of two individually aligned probes, each covering half of the

perimeter, there are apparent discontinuities at e = 90 ° and _)= 270 °, which are the

overlapping points. Figure 4.9 shows data taken in the same experiment, with the

same probe alignment, but with the turbine centered. The same discontinuities are

also apparent. Subtracting the two sets of data, as in Fig. 4.10, produces a smooth

transition. This procedure is, of course, not available when absolute values are

required, such as if the net torque were to be calculated from the flow deflections in

Fig. 4.8. On the other hand, if only the cross-force and direct force due to the non-
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uniformities are desired, elimination of the mean value introduces no error.

For reference, in what follows, e = 0° corresponds to minimum tip gap, e = 180 °

to maximum tip gap. The flow survey data to be discussed in the following sections

refer to Configuration 1, nominal speed (3440 rpm), with an eccentricity of 0.45 mm

(e/H = 0.019). The mean loop pressure is 2 atm.

4.3.1 UPstream Survey

Generally speaking, the upstream data indicated uniform flow properties down

to the level of accuracy of the data. This may still miss some small non-uniformity due

to upstream redistribution, as will be discussed below.

Figure 4.11 shows a total pressure nonuniformity survey at station 1, some two

blade chords upstream of the stator. The measured Pt is, as expected, tangentially

uniform down to about +0.2%. The expected Pt defect in the boundary layer has been

suppressed largely by the centered turbine subtraction. The static pressure survey

taken by the same 3-hole probe shows the same level of azimuthal uniformity.

Figure 4.12 shows the axial velocity survey. Again, the boundary layer radial

dependence has been largely suppressed by the subtraction. There is a hint of a

redistribution of flow, with perhaps 1-2% axial velocity excess at 180 ° (maximum tip

gap). This is what theory (Sec. 9) would indicate, but the effect is too small to be

unambiguously resolved. Similar comments apply to the tangential velocity survey

shown in Fig. 4.13. Here we can see a slight positive maximum of vt (i.e. in the

direction against rotation) at the 90 ° location, and a minimum at 270 °. These would be

consistent with azimuthal flow migration towards the wide gap region (at 180 °) and

hence with both theory and the axial velocity indications of Fig. 4.12. Once again, the

effect is in the 1-2% range, and not well resolved.

The surveys at station 2 (one chord ahead of the stator) were hampered in this

test by clogging of one of the two 5-hole probes at that location. The slight indication
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of a vt minimum at 270 °, which is barely visible in Fig. 4.13 for station 1, appears to be

confirmed at this station (Fig. 4.14).

The radial velocity data at station 2 are shown in Fig. 4.15. Very small if any

variations are noticeable. Perhaps one can detect a 1-2% positive radial velocity in

the 180 ° region, again consistent with migration towards the wider gap.

Finally, Figs. 4.16 and 4.17 show the pressure distribution from wall taps in the

middle of the stator blade passages. These were not subtracted (Fig. 4.16 is for the

eccentric turbine, Fig. 4.17 for the centered turbine). The scatter corresponds to the

multiple taps and also to the measurements taken at different times during the process

of radially translating the 3- and 5-hole probes (H is when the probes are almost

withdrawn completely, C to full insertion spanning the passage). Even though these

probes are some distance up and downstream of the station being measured, some

sort of disturbance seems to be induced, in view of the systematic trend visible in Fig.

4.16. Equally possible is a slight time drift of the pressures, since Fig. 4.17 shows no

correlation to probe depth. In any case, the azimuthal pattern is still very slight, with

only a hint of a depression in the 180 ° region in Fig. 4.16.

4.3.2 Pressure Survey in the Rotor Region

Immediately past the stator, the picture changes radically as far as tangential

variations. Figure 4.18 shows the collection of wall tap pressures at station 4, between

stator and rotor. Aside from the scatter, which is similar to that seen at station 3, there

is now an unmistakable nonuniformity, with a minimum located some 30 ° ahead of the

180 ° location (maximum gap). The amplitude and phase of this nonuniformity are the

same for each individual pressure tap on the rotatable casing, and shifts between taps

appears to be due to residual influences of the blading of the stator. For comparison,

the centered-turbine pattern is shown in Fig. 4.19. The amplitude of this pressure

nonuniformity appears to be about 0.0027 Pro, or 0.22 (Pc2_o//2),or 0.028 pU 2.
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The same pattern is visible at station 5 (over the rotor leading edge region) in

Fig. 4.20. The amplitude has increased slightly, to 0.0031 Pro, although the precision

is somewhat less, because only two taps are used in that section. Even more clear is

the set of data for station 6 (rotor mid-chord), as shown in Fig. 4.21, where 8 taps are

used. The amplitude is now 0.0042 Pto. Further downstream, nearly over the rotor

trailing edge (station 7) the amplitude, although a bit uncertain, appears to have

increased further to 0.0055 Pro (Fig. 4.22).

The theoretical treatment in Sec. 9.3, where the flow is allowed to redistribute as

it approaches the stage, does predict this kind of pressure pattern, at least

qualitatively. In essence, the flow migrates tangentially (over a length scale of order R)

towards the wider gap, by a relative amount of the same order as the relative gap or a

fraction of it. This amounts in our case to perhaps +0.5% variations of the axial flow

entering the stator which, as noted, may be there but are difficult to measure.

However, as the flow expands in the stator, these differences get magnified by 1/cos

o_2 (o_2 = stator trailing edge angle) and, from Bernoulli's equation, they translate to

pressure variations which are strongly amplified. If P1 = constant is the upstream

pressure, P2 is the pressure after the stator (with fluctuations P2') and Cxo is the axial

velocity, we can write

PO- P2_ l c_° tan2ot2 (4.3)P 2

and, in terms of the perturbations,

P2'_ Cx'otan20_ 2

pc_o cxo

In our case, tan2o_2 = 7.55, and so even fluctuations of less than 1% in Cxo

into several percent in p2/pc_ o.

More quantitatively, we show in Fig. 4.23 the results of the model modification

explained in Sec. 9.3.8 (radially uniform stator flow) for the parameters of our

(4.4)

translate

/'
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experiments. Plotted is the amplitude and phase angle (with respect to the maximum

gap location) of the fluctuation of P2/[pU2(e/H)], where U is the wheel speed, H the

blade height and e the rotor offset. At the nominal condition, _ = 0.58, the magnitude is

about 1.15, and so we predict

P2' _ 1.15 x 0.019 = 0.02_

pU 2

As noted, the experimental value at stator exit (station 4) is P2?pU 2 = 0.028.

Further downstream over the rotor, this increases, for reasons which are not entirely

clear but, as we will see shortly, the amplitude reverts to its value at station 4 when we

move downstream of the rotor. Part of the increased nonuniformity over the rotor

blades may be due to radially localized near-tip effects, such as the rolled-up tip

vortex. Another part is simply due to continued flow expansion although, due to the

low reaction, this is a weak effect in our case. Yet another possibility is non-linear

pressure averaging, introducing a bias in the measurement when the very large

fluctuations due to individual blade passage are averaged by the measuring system.

This latter possibility was explicitly investigated by using locally a fast-response Kulite

probe. It was found that the averaging was, in fact, correct.

The phase shift of some 20-30 ° which is visible in all the experimental pressure

patterns is such as to introduce a pressure force component in the forward-whirling

direction. It will be seen later that this is a significant effect, accounting for 30% to 40%

of the total measured Alford force. More directly, these pressure forces are almost

entirely responsible for the restoring direct forces Fx measured, and here this phase

shift plays only a minor role (as the cosine of the shift).

The theory does not predict the correct sign for the phase shift. This is most

likely because it ignores the net pattern rotation due to the finite axial length of the

stator and rotor. This is an unfortunate consequence of the "actuator disk" idealization,

but it should be correctable with some additional work by, for example, splitting the
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"disk" into two, one for stator and one for rotor, with realistic axial spacing between

them. Thus, it seems well established that the theory is correct at predicting azimuthal

flow redistributions, although their magnitude over the rotor blading is underpredicted,

and the small phase shift is predicted with the wrong sign.

Additional evidence about this redistribution is presented in the next sub-

section.
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4.3.3 Static Pressures Downstream of the Rotor

Figure 4.24 shows the azimuthal pressure pattern at station 8, about 1 chord

downstream of the rotor exit. It is interesting to notice the persistence of the

nonuniformity, with little change in relative phase, and its return to the same amplitude

as in station 4 (between stator and rotor). At station 9 (about 3 chords downstream of

the rotor), the amplitude is somewhat reduced, to about 0.0023 Pro (Fig. 4.25),

probably because this downstream distance is becoming comparable with the

characteristic distance (R) for azimuthal flow redistribution (Sec. 9).

These results prove that, at least the part of this pressure pattern visible at

stations 4 and 8, is not a local blade-tip effect, but one with a much broader length

scale, of order R. Further corroboration can be seen in radial static pressure surveys

taken with the multi-hole probes at these stations. The extraction of Pstatic from the

readings of these probes, which are not aligned to the local flow, is more prone to error

than that from simple wall taps, but the patterns still emerge clearly. Figure 4.26 shows

the case of station 8, and Fig. 4.27 that of station 9. Although there is scatter, it is clear

that, at least down to the surveyed depth of r/H = 0.76 (where tip effects are

substantially damped), the static pressure still preserves the same azimuthal

distribution as at the wall. This is to be expected from the large-scale nature of the flow

redistribution responsible for these variations. This is an important point, because it

gives credence to our procedure (explained later) of calculating pressure forces by

projecting on the turbine hub the pressures measured on the casing.

One other point should be mentioned here which appears to have no direct

bearing on our research, but is puzzling in its own right. For the centered turbine (and

also for the offset turbine, in an average sense), the wall static pressure shows a

sudden drop between stations 7 and 8, namely, between the level on the turbine and

that downstream. This is illustrated clearly in Figs. 4.28 and 4.29, for a case with the

93



610'0 = H/a =oao= 7o mea=]su_op _nssazd de] llef,l _E'_ a=$I_

0

09_ OLE OgI 06 C
, , , ;L'O

...............................i..................._.....................................................................................................................................................................;6L'O

o ..........................!...................................................2..... ....i....i.................................................
0

...................................................,.....................................................................................................................................................................gOg'O

, , l , l i ;g'0

>

oo

_5

-.T

oh



',.0

t,.rl

Q
'i

ca.,

--e,

0.81 I I I I

0.805 ...................................................'.....................................................................................................................................................................
0 0

©_..................................................il........................................................ii_' ...........................................................................................................
0.8 ................................................_........................................................_.............................................o i o i

...................................................... I ........................................................

0.795 ...................................................:.....................................................................................................................................................................

I I I I

0.75) _0 180 270 360

0

Figure 4 25 Wall tap pressure 3 chords downstream of rotor e!H .= 0.019



O_

0.01 !
!
i

......................... ÷ ........................... : ........................... + ........................... _........................... _. .................................................................................

<> .

0.005 ..................................................:.......................................................'...........................÷...........................: .......................
0

............................................................................................................................._......................_.......i_........._......................_ ....
× + ©

t []
z .................................... .I..............................................................................'................+ ......!

c ..........._-.................................. ;_ _ i o +
X

0 o _ _ 0 <> ,J a

....................................................'_ .........÷ .......................6 ..................................'i........................................................................T .....

[] 0u [] _ A

-0.005 ......................................i_i...............;.................."...........................'..........................."..............................................................................

+

.............._ .......................,_.......i...........................T.......................................................T...........................i...........................T.........................
i _ i i ;

"O'OJo- 90 180 270 360

0

[]

<>

X

+

A

r/H=0.76

r/H=0.82

r/H=0.88

r/H=0.94

r/H=l.00

r/H=l.015

Figure 4.26

0

A radial •arid tangential survery of static pressure at Station 8



"-..I

0",

0.01 I I I I

0.005 ...................................................".....................................................................................................................................................................

• 4>
......................................................'.............................................................................._.......................×_......_..........x......................._-

X + 0 Arh

...................................................,.......................o...............................,....................¢ .......................i5'...................................................C
i × 8

_, ,_!'_ 2 _....................._........................._..........................................................................,_................................_.........._........................._..
x 0

_........................_............................................................:.................................._........................................................................._0 _00_
A

-0.01' i , t I
'0 90 180 270 360

O

[]

0

X

+

A

r/H=0.76

r/H=0.82

r/H=0.88

r/H=0.94

r/H=l.00

r/H=l.015

0

Figure 4.27 A radial and tangential survey of static pressure at Station 9-.



turbine centered. With reference to the upstream total pressure, the taps over the

turbine show a regular pressure decrease to about 0.855 at station 7 (Fig. 4.28). At

stations 8 and 9 (Fig. 4.29), this has dropped to 0.805. The design of the casing and of

the hub is perfectly smooth, with constant height and no obstructions, and there

appears to be no satisfactory explanation for a drop of that magnitude (comparable to

pU2). It was suspected that perhaps the slow-responding pressure sensing system

had a nonlinear response to the rapid pressure fluctuations caused by blades passing

over the taps, such as to cause an averaging bias. This has been mentioned in the

turbomachinery literature [10b] as a danger to guard against when performing

measurements near rotating components. Te test this hypothesis, we installed a flush-

mounted 5 psi Kulite transducer, with very high frequency response, on one of the

station 6 plug holes (used normally for the proximeters). The reference was to one of

the downstream points (station 10). A typical time-resolved pressure trace from this

transducer is shown in Fig. 4.30. Each blade passage produces a characteristic rapid

pressure fluctuation, but the time average of these pressures corresponds very closely

to the difference of those read directly by the other wall taps at station 6 and the

reference at station 10. In fact, the time average P6" PlO is about 2.3 psi, slightly more

than the 2.1 psi read by the wall taps. The effect seems to be real, but we have no

explanation for it.

/i

4.3.4 Velocity Components Downstream of the Rotor

The 5-hole probes at station 8 were used to measure all three velocity

components in the outer 1/4 span region there. Figure 4.31 shows the somewhat

unexpected results for the radial component. The flow is seen to be differentially

moving radially away from the tip in the region with the wider gap, and towards the tip

in the region with the smaller gap. The radial velocity is, of course, very small very

close to the wall, and also as the core is approached, and, in fact, a trend can be seen
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to reverse the radial velocities in the r/H = 0.82, 0.76 curves, i.e. the flow now moves

away from the narrow gap. These trends are not understood at present.

Also surprising is the axial velocity survey shown in Fig. 4.32. The

nonuniformity is largely confined to the tip region, and is seen to indicate lower axial

velocities near the 180 ° area, where the fluid is coming from the wider gap. This is

consistent with the radial migration pattern from Fig. 4.31, and, like it, is not

explainable by our theoretical work.

The most important data for interpretation of the cross-forces are the tangential

velocities after the turbine because, through the use of the Euler turbine equation, they

can be converted to local driving forces, and then integrated to yield direct and cross-

forces. Figure 4.33 shows these velocities (after subtracting the centered turbine

values) for station 8. The positive values seen near 180 ° indicate underturning there

by the rotor blades, clearly because of the flow leaking through the wider gap. This

underturning is seen to be nearly uniform in the first 5% or so near the casing wall, and

then it decreases to near zero by the time r/H = 0.76. Since our measurements are

time-averaged, this appears to represent a steady shear pattern where the flow

continuously changes its orientation as we traverse in the radial direction. In reality,

there is a discrete blade-to-blade pattern, of which our data represent the average

only. This pattern is quite complex, typically involving a collection of rolled-up tip

vortices arising one from each blade-tip gap (see Sec. 9.3). Because of this, there is a

question as to whether our probes are averaging linearly these wide velocity

fluctuations, and whether the calibrations (validated typically for orientations under

+30 ° from the flow direction) remain valid over the range of fluctuations. Lacking much

more elaborate calibration and checking procedures, these questions must remain

unanswered here. As a tentative argument in favor of the procedure used, we can

assume that the instantaneous angular fluctuations will not exceed twice their mean

value, in which case the majority of the data points are within calibration range. The
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linear averaging properties of at least the wall taps were commented on before.

The same tangential velocity survey, but this time at station 9 (3 chords

downstream of the rotor), is shown in Fig. 4.34. The underturning pattern is now seen

to have penetrated deeper, and is actually maximum at the last surveyed depth (r/H =

0.76). It is unfortunate that no deeper points were surveyed in this case because the

thickness of the underturned region cannot be discerned from the data. At the same

time, the amplitude of these tangential velocity variations has decreased compared to

station 8, as is to be expected from angular momentum conservation.

4.3.5 Estimation of AIford Forces From Fluid Data

There are two main sources of radial force on the turbine from the flow

properties we have surveyed: (a) a non-uniformity in flow turning by the rotor blades,

which will create non-uniform work extraction around the perimeter; and (b) a non-

uniformity in static pressure around the perimeter, which will directly integrate to a

radial force.

The force exerted by the blades per unit perimeter is given by Euler's turbine

equation:

fy(e) = pVx (ve2 - Ve3) dz

where re2 and Yea are the tangential velocities before and after the rotor, and pvx is

the mass flux. All the quantities inside the integral depend on e, but the variations of

ve2 are only minor, and those of vx (Fig. 4.32) are restricted to a very narrow radial

zone and can beshown to contribute little to the integral. Thus, mainly the vanations

of ve3 (Figs. 4.33 and 4.34) matter. The integrand for Eq. (4.5) at station 8 is shown in

Fig. 4.35, and its radial integral (the force fy per unit length) in Fig. 4.36.

This force can generally be represented as a Fourier series in e, of which only

the first harmonic contributes to the radial forces. Assuming a truncated Fourier series

(4.5)
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representation

fy(O) _ fy + Afy cos (0 - *f) (4.6)

and defining the forces Fx along the displacement of the rotor (negative if restoring),

and Fy perpendicular to the displacement (positive if feeding into forward whirl), we

have

FX _ - fy sin 0 RdO = - _R Afy sin _f
(4.7)

_0 2_

Fx = - fy sin 0 RdO = - _R Afy cos _f (4.8)

The torque can also be, in principle, obtained from the fy distribution as

Q = 2nR fy (4.9)

but, as explained in Sec. 4.3, this introduces probe alignment errors which are not

present in Afy. Nevertheless, this can be used as an approximate check of the

measurements. In the present case, we measured fy = 373 N/m, and Eq. (4.9) gives

an estimate Q = 39.0 Nm, which is close to the torque measured directly by the shaft

gauge (Q = 39.9 Nm). Incidentally, an independent check is provided by the total

temperature measurements upstream and downstream of the turbine (24.0°C, 19.0°C),

which yield 39.2 Nm. This degree of agreement with the AT t data is, however,

somewhat misleading, because the uncertainty in the thermocouple readings is

perhaps as high as +0.25°C. In other cases, we have indeed obtained much worse

agreements.

The pressure contribution to the forces Fx, Fy is obtained here by simply

applying the pressures measured on wall taps at station 6 on the turbine hub.

Assuming this pressure is of the form

P(0) = P + AP cos (0 - _p) (4.1o)
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we then obtain

F x = _.fo2n

Fy = - 12n
,to

Pcos0 RWd0 = -xRW (AP) cos_p

(4.11)

P sin0 RWd0 = -nRW (AP) sin_p

(4.12)

where W -_-2.4 cm. is the axial width of the rotor hub. As noted in Sec. 4.3.2, there are

good reasons to believe that at least the degree of tangential nonuniformity seen at

stations 4 and 8 does penetrate throughout the annulus. There is some question,

however, about the excess between the nonuniformity amplitudes at stations 6 vs. 4

(0.0042 Pto at station 6, 0.0027 Pto at 4), because there is no direct way of measuring

the near-hub static pressure. Thus, our procedure may, in the worst case,

overestimate pressure forces by about 50%.

The forces F x and Fy will be reported in the non-dimensional form of o_x, O_y,as

in Eqs. (4.1) and (4.2). The results are shown in Table 4.2, where the dynamometer-

measured o_x and (Zy (Sec. 4.2) are also shown for comparison.

TABLE 4.2

FORCE COEFFICIENTS OBTAINED FROM FLUID DATA VS.
DYNAMOMETER DATA: CONFIGURATION 1, DESIGN CONDITION

(°_x)WQrk D_#fect

-0.72

(O_¥)Work Defect

1.52

((_x) Pressure

-2.52

((Zy) Pressure

1.18

(ZxWD + O_xp

-3.24

((Zx) Dynamometer

-2.81

O_YWD+ (Zyp ((Zy)Dynamomete r

2.70 2.57

There is reasonable agreement between fluid-derived and dynamometer-derived

forces. The split between work defect contributions (from the nonuniform underturning

of the flow) and pressure contributions is interesting. Pressure effects dominate the
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direct forces -2.52/-3.24 = 78%, while work defect (the classical Alford effect) is the

larger contribution to cross-forces (1.52/2.70 = 56%). However, there are significant

contributions of the work defect to direct force, and even more so of the pressure

nonuniformity to the cross-forces. To our knowledge, these effects were not so far

known. •

4.3.6 Fluid EffQcts at Off-Design Conditions

In configuration 1, we also surveyed the flow field for off-design conditions (70%

and 110% speed, at nominal flow). This was not done for the remaining

configurations.

Qualitatively speaking, the same features were found as at co = CODESIGN. The

flow angles at rotor exit were considerably different, of course, and some iteration was

required to bring the probes within approximate alignment at each station and each

depth. We only give here the final integrated force conditions, with their work defect

and pressure parts indicated (Tables 4.3 and 4.4).

FORCE

TABLE 4.3

COEFFICIENTS FROM FLUID EFFECTS
DYNAMOMETER

co/co D = 0.7

AND FROM

.f

(Or,x)Work Defect

-0.46

((_y)Work Defect

1.20

((Xx)Pr_;ure

-2.30

(O_y)Pressure

0.72

GxWD + OCxp

-2.76

(XYWD + (Xyp

1.92

((Xx)Dynamqmeter

-2.12

((Xy)Dynamometer

2.43
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FORCE

TABLE 4.4

COEFFICIENTS FROM FLUID EFFECTS

DYNAMOMETER oo/ooD = 1.1

AND FROM

(°_x)Wqrk Dqfect

-0.94

((Xy)W0rk Defect

2.98

(Or,x)Pressure

-3.46

((7,y)Pressure

1.44

(XxWD + O_xp

-4.40

Or,)_/Vo + (X,yp

4.42

((Xx)Dynamometer

-3.42

((Xy)Dyn;_mometer

2.66

/
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5.0 EffQ¢=ts of Varyin_o Geometrical Parameters (Unshrouded Turbine)

This section presents the static force and flow data for Configurations 2, 3, 4, and 5

(Table 3.1 )"

Confiouration 2 differs from Conf. 1 in that the stator was moved closer to the rotor.

This decreased both d and d' (Fig. 3.1) to d/c = 0.26, d_/c = 0.15.

Confiouration 3 kept the same blade-to-blade distance (d/c = 0.26), but further

reduced the hub gap (d'/c = 0.013).

Confi_ouration 4 returned to the same d'/c as Conf. 2 but reduced the blade tip gap to

8/H = 0.0187,

Confi_ouration 5 also used 5-/H = 0.0187, this time with the narrow hub gap, d'/c =

0.013.

From the above, it is clear that we can obtain information on the effect of varying

d'/c alone if we compare results from Configurations 2 and 3, and also from comparing

Configurations 4 and 5. We can also obtain information on the effect of varying the tip

gap 5-/H alone by comparing Configurations 2 and 4, and also by comparing

Configurations 3 and 5. Finally, comparison of Configurations 1 and 2 gives

information on the effect of varying d and d' together. Separating out the effect of d

alone depends on using the sensitivity data to d' from the pairs 2-3 and 4-5.

5.1 Dynamometer Force Data

The complete set of direct and cross-force static measurements for

Configurations 2-5 is given in physical units (Ibf vs. mils) in Figs. 5.1 through 5.12.

In these figures, the abscissa is the turbine offset ex, as determined by the

thickness of the metal shims inserted on one or the other side of the traversing

mechanism. The ordinates are the forces Fx (along the offset) and Fy (perpendicular to

the offset). These are derived from the dynamometer bridge signals, as explained in

Sec. 2.3.1. For most conditions, three measurements were made at each eccentricity

/"

t •
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setting, and all three points are shown in the graphs. For each of the geometrical

configurations, data are shown for the design speed, co = coD --"3440 rpm, as well as for

a low speed case (L), with co= 0.7 (oD and a high speed case (H), with co= 1.1 coD (all at

the nominal mass flow rate).

The very small data scatter is apparent from the graphs. In terms of determining

the curve slopes (i.e. the direct stiffness Kxx and the cross-stiffness Kxy) the scatter

effect can be estimated to be under 1% for Kxy and +5% for Kxx, which does show

some consistent non-linearity. The origin is seen to be due shifted to some

uncertainty on the location of the centered position and to some lack of roundedness

of the casing. The latter effect is probably responsible for the fact that, at the

eccentricity at which the best fit line to the cross-forces crosses through zero, the best-

fit line to the direct forces is consistently between -0.3 and -0.5 Ibf. As noted before,

the linearity is better for the cross-forces. This may be related to the fact that the direct

forces are mainly due to the pressure nonuniformity around the turbine periphery,

while the cross-forces are mainiy due to uneven work extraction by the blading.

The best fit lines were used to calculate the direct and cross-force Alford force

coefficients

2Fx,y R

°tx'Y= Q (ex/I-I) (5.1)

where R = 0.129 m = 5.08 in. is the mean turbine radius, Q is the torque, measured by

the torque gauge in the intermediate shaft (see Table 5.1), and H = 22.8 mm = 0.897

in. is the nominal blade height. The results are shown in Table 5.2, where the

corresponding values for Configuration 1 (from Sec. 4) are also included.

Several trends are noticeable from these data. The first is a general increase of

both I xl and O_ywith turbine "speed or, equivalently, a decrease as the flow coefficient

¢_= Cx/(o_R) increases. In ratio form, this is shown in Fig. 5.13. For reference, the

theoretical curve obtained from the 2-D theory explained in Sec. 9.2 is also shown.

The theory exhibits the same trend, including the acceleration of the dependence

towards the lower _ values. 127
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TABLE 5.1
MEASURED AT THE VARIOUS

COD - 3440 RPM

CONDITIONS

Configuration Speed (co)

1 0.7

2

3

4

5

COD

1.0 0)D

1.1 0)D

0.7 o)D

1.0coD

1.1 mD

0.7

1.0

1.1

0.7

1.0

1.1

COD

roD

COD

COD

COD

coD

0.7 coD

1.0 coD

1.1 coD

Torque O (Nm)

47.3
39.9
37.3

50.2
42.2
39.2

49.2
41.1
38.4

48.6
39.1
35.3

48.5
40.0
37.0

ALFORD

TABLE 5.2
COEFFICIENTS FROM DYNAMOMETER

Confi guration
#

1L
1

1H
2L
2

2H

3L
3

3H
4L

4
4H
5L
5

5H

_x

-2.12
-2.81
-3.42

-1.54
-2.14
-2.46

-1.47
-1.87
-2.04
-2.93
-3.42
-3.65
-2.82
-3.47
-3.50

(XV

2.43
2.57
3.66
2.49
2.96
3.23
2.87
3.02
3.43
3.38
3.55
3.72
3.83
3.98
4.04

DATA
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A second trend, apparent from comparison of Configurations 2 and 4 and

Configurations 3 and 5, is an increase of both I xl and m/when the blade tip gap is

reduced. With only two values of 5-/H tested, it is not possible to ascertain whether the

trend is linear or it accelerates at small 8-/H. The indications from the theory of Sec. 9,

which also shows this trend, is that it should be a fairly linear effect, although the

theory underestimates its magnitude substantially. Table 5 3 shows the differences

between I::Zywith the narrower gap (1.87% of height) and with the wider gap (3% of

height), both for the wide axial hub gap (Configurations 2 and 4) and with the narrow

axial hub gap (Configurations 3 and 5).

result

--- H

0.74 perl% A
H

Assuming linearity, we obtain the approximate

(wide axial gap)
(5.2)

(narrow axial gap)

The effect on -o_x is of similar magnitude. Some of the difference between sensitivities

for narrow and wide axial gaps can be distributed to the fact that the mean coefficients

are themselves larger in configurations with the narrower axial gap (see below).
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TABLE 5.3
EFFECT OF VARYING BLADE TIP GAP ON CROSS-FORCE

COEFFICIENT,
FOR TWO DIFFERENT AXIAL HUB GAPS

II LOWCO I COD

0.88 0.59

High co

0.49

Avg.

0.65

0.96 0.96 0.61 0.84

The third effect that can be extracted from the results in Table 5.2 is an increase

of both IO_xland O_y,when the axial hub gap d' is decreased. This is visible both by

comparing Configurations 2 and 3, and by comparing Configurations 4 and 5. Once

again, the issue of linearity of these effects cannot be resolved with the available data.

It is interesting, however, to make the assumption of linearity in order to separate the

effects of varying d and d' (Fig. 3.1). This is, in principle, possible because, as noted,

Configurations 2 and 3 differ only in d', while Configuration 1 differs from 2 and 3 in

both d and d'. If we postulate a linear variation of CZy,of the form

(Zy=
I¢t _¢!

and use the data for configurations 1,2 and 3 in Table 5.2, the following results are

obtained (all for (_-= 0.03):

At co = coDE_" O_y

At co = 0.7 coDES "

At co - 1.1 coDES "

= 3.343 1.209 d 0.438 d'
C C

_d 2.781 d'_,, = 2.280 + 2.423 - --
J C C

_d 1.438 d'a,, = 3.707 - 1.001 - --
J C C

(5.4a)

(5.4b)

(5.4c)
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The sensitivity to inter-blade (stator-rotor) spacing is uncertain in sign, although

if the e_yfor Configuration 2 at 0.? CODESwere raised to be the same fraction of e_y(_)

as for the other configurations (see Fig. 5.13), the sign of this sensitivity (the coefficient

of _d__in Eqs. (5.4) would then be negative throughout. On the other hand, the
C

d'coefficient of --, i.e. the sensitivity to axial hub gap is negative in all cases, averaging
c

approximately - 1.55 over the speeds tested.

For the cases with the smaller radial clearance (configurations 4 and 5) only the
t

coefficient of (d) can be extracted, since d/c was not varied in these cases. From the

values in Table 5,2 we obtain for this coefficient -3.32,-3.13 and - 2.32 at 0.7 COD,

and 1.1 e,_, respectively. These values are larger than those for the larger radial

clearance, but they are roughly comparable, and of the same sign.

We have not so far been able to identify positively the origin of these trends.

Earlier experiements by K. Urlicks [5] indicated an _ effect, namely, an increase

of O_ywith axial clearance. This is illustrated in Fig. 5.14. The effect of radial clearance

(s" in the figure) is also illustrated in Fig. 5.14, and this does agree with our own

findings (increased e_yat narrower radial clearances).

The theoretical indications regarding the effect of axial clearance are

ambiguous, and no complete theory exists of this effect. On the one hand, it is shown

in Sec. 9.3.8 that the work defect, or classical Alford mechanism for cross-force

production, is weakened by the tangential flow redistribution induced by the upstream

effects of the rotor eccentricity, and that opening up the axial gap which connects the

stator-rotor space to the hub volume should, in turn, reduce this redistribution, and

therefore should ir_crease the Alford forces. This would agree with Urlicks' data, but

conflicts with ours. On the other hand, as Sec. 9.3.8 also implies, the reduction of the

upstream redistribution when the axial gap increases is itself due to a corresponding

reduction of the pressure non-uniformity just ahead of the rotor. Since this pressure

nonuniformity does contribute a net forward-whirling force component, opening up the
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axial clearance can be expected to r_duce the pressure contribution to O_y(a similar

effect is documented in Secs. 6 and 7 in connection with labyrinth seals). Thus, the

net effect must depend on which of the O_ycomponents (blade work nonuniformity or

pressure nonuniformity) is more sensitive to axial clearance. Additional analysis of our

flow data and further theoretical work (as part of the doctoral dissertations of Seung Jin

and Soomyung Yoo) is expected to clarify the situation.

5.2 Flow Data in Configurations 2-5

No flow survey was obtained in Configuration 3. For the others (Confs. 2, 4, and

5), only the nominal speed was surveyed. In Configuration 2, with the wide tip gap (5

= 27 rail = 0.68 mm), the surveys were done at the centered turbine position and at an

eccentricity e =18 mil = 0.45 mm (e/H = 0.019). After the tip gap was reduced to 17 mil

(0.43 mm), namely, for Configurations 4 and 5, the surveys were done at the centered

position and at e = 10 mil = 0.25 mm (e/H = 0.011).

5.2.1 Forces From Flow Data

The most important results were the final, integrated direct and cross-forces

obtained according to the procedures explained in Sec. 4.3.5. They are here reported

in coefficient form in Table 5.4.

TABLE 5.4

DIRECT AND CROSS-FORCE COEFFICIENTS FROM WORK DEFECT

NONUNIFORMITY, ( )WD, AND PRESSURE NONUNIFORMITY ( )p

Configuratio

n

((Xx)WD

5

(O_x)p

-0.50

_xWD + (Zxp

-4.20

(O_,)WD

-4.70

((Xv)p (ZYWD + (Zyp

2 -0.46 -2.28 -2.74 1.68 0.98 2.66

4 -0.88 -5.00 -5.88 3.16 1.56 4.72

2.46 2.08 4.54
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The table separates the contribution from nonuniform work extraction and from

nonuniform rotor area pressures. The overall O_xand O_ySO calculated are compared to

those measured by the dynamometer (from Table 5.2) in Table 5.5.

COMPARISON OF

Configuratio

n

2

4

5

TABLE 5.5
FLOW-DERIVED AND

FORCE COEFFICIENTS

(_x)FLOW

-2.74

-5.88

-4.70

(_x)DYN.

-2.61

-3.36

-3.47

DYNAMOMETER-DERIVED

(O_v)FLOW

2.66

4.72

4.54

(O_/)DYN.

2.96

3.55

3.98

The overall coefficients from flow data compare reasonalby well with those

measured directly, although the flow-derived coefficients for Configurations 4 and 5

are too high by about 30%. This very large value of O_xand O_yin Confs. 4 and 5 is

seen in Table 5.4 to arise _ from high work defect forces and high pressure forces.

The reasons for this are not understood. From the dynamometer data, these

configurations (which have the smaller tip gap), do show higher force levels than those

in the larger gap cases (Confs. 1,2, and 3), but the difference from fluid forces appears

exaggerated.

This substantial effect of the smaller tip gap is, in any case, not understood at

present. It appears to suggest a stronger sensitivity of blade work loss to tip gap when

the gap is very small. This would seem to imply some new effect, quite possibly a

strong role of viscous forces in the gap flow dynamics. We are currently working on a

theoretical model of such effects. One hint that viscous effects, which have to date

been generally ignored based on cascade scaling laws, such as that given by Rains

[11], may be prominent in turbines is the data of Graham [12] in a

4¸
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cascade. These experiments showed that the viscous drag of the moving endwall,

which in a turbine _ the pressure-driven gap flow, can easily modify or

suppress the leakage jet and its roll-up into a vortex.

Incidentally, this effect was also noticed by K. Urlichs [5], as shown in Fig. 5.14,

reproduced from his work. Note also the increase in (Zy (= 2 K2) with axial clearance,

in disagreement with our results of Sec. 5.1.

5.2.2 Selected Flow Survey Results

Rather than including all of the large data base collected in these surveys, we

will select for presentation a few items that illustrate specific effects.

By and large, the trends are as discussed in more detail in Sec. 4.3.

Figures 5.15 and 5.16 illustrate clearly the nature of the mean flow behind the

turbine in the near-tip region. Here the raw tangential velocities are shown (centered

and eccentric cases, not subtracted). In the centered position (Fig. 5.15), we can see

at all azimuths the substantial flow underturning that occurs in the outer 10-20% of the

blade. At the r/H = 0.76 depth, the flow has returned more or less to axial, as

corresponds to the design condition for our turbine. In the eccentric case (Fig. 5.16),

the underturning is actually very slight in the side of the turbine with the small gap

(about 27 - 18 = 9 mil = 0.23 ram), while it is even greater than before near the wider

gap (about 27 + 18 = 45 mil = 1.12 mm). It is this asymmetry that produces the work-

defect forces Fy.

The origin of the large pressure forces in the configurations with small tip is

illustrated in Fig. 5.17 (from Conf. 4). This shows even higher pressure fluctuation

amplitude than Fig. 4.21, for Conf. 1, even though the relative eccentricity here is only

0.011, vs. 0.019 in Conf. 1. Similarly, the fluctuation of force per unit length shown for

Conf. 4 in Fig. 5.18 is comparable to that shown in Fig. 4.36 for Conf. 1, with the higher

eccentricity.
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By suppressing the concentric contribution to the wall pressure distributions at

stations 5, 6, and 7, over the rotor, Fig. 5.19 (Conf. 5) brings out an interesting

observation. We noted in Sec. 4.3.3 that the amplitude of the wall pressure

nonuniformity increased steadily between stations 5 and 7, i.e. from leading to trailing

edge. Figure 5.19 shows that the increase is entirely concentrated in the narrow tip

gap region, where the wall pressure shows a strong peak. There is no corresponding

minimum in the wide gap region and, in fact, the nonuniformity pattern outside the 60-

90 ° nearest the narrow gap is exactly repeated in the three axial stations. This again

highlights a qualitatively different behavior when the tip gap is narrow. According to

Fig. 5.19, the difference appears fairly suddenly some 45 ° from the minimum gap. At

this point, the local gap width is 17-10 cose ---12 mil. Perhaps this is the gap width

where, for the present configuration and flow parameters, the viscous effects of the

counter-moving casing become strong. This area needs to be researched much more

carefully.
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6. Forces in a Shrouded Turbine

6.1

Many Turbine designs feature a tip shroud band with two or more labyrinth seal

strips. There are two motivations for this design: (a) to reduce tip losses by cutting

down on the leakage flow, and, (b) to add stiffness to the blading. From the point of

view of the Alford force, one would expect the shroud and its seal to minimize or

eliminate them altogether, precisely because of the tip loss reduction. It is known,

however, that labyrinth seals with strong inlet swirl are themselves prone to

developing cross-forces, because the swirling flow in the seal cavity tends to skew the

cavity pressure pattern. Also, it was recently found (see Sec. 7.3)that the

nonuniformity in pressure that exists upstream and downstream of the seal is

responsible for increased levels of the cross force. Urlichs (Ref 5) actually found cross

force coefficients 20 - 40% higher when he added a shroud with various types of seals

to his turbine. He explained the increase on the basis of his measurements of the

azimuthally nonuniform cavity pressure. Our Configuration 6 was developed to study

these effects, taking advantage of the parallel work on labyrinth seals reported

elsewhere in this document. (Sec. 7)

6.2 _mDlementation

After completing our tests on the five configurations using the unshrouded

turbine (configurations 1 through 5), we modified it by removing the outer 30% of each

blade and inserting a full shroud band fitted with two sealing bands. Since the casing

was left smooth and hence the seal is not recessed, the turbine is not expected to be

as efficient as before. On the other hand, this configuration is very similar to the

configuration present in the labyrinth seal tests (Sec. 7 of this report), which allows for

cross comparisons.
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The entire shroud band is shown in Figure 6.1 and a cross section view is

shown in figure 6.2. The sealing band angles and tip thicknesses are similar to those

used in our seals rig. The ratio (I tan 6°)/5 is approximately 2.0, where I is the distance

between knife edges and 5 is the nominal gap. The value 2.0 is in the range of those

used in the seals rig. The seal length is such as to cover exactly the blade tip axial

chord.

The band was designed with a 2/1000 inch interference and was then shrunk-fit

over the blades. The blades were previously cut and ground to the required height in

order to accommodate the shroud. The tensile stress developed in the shroud due to

the shrink-fit is 2x1011 N/m 2, well within the strength of stainless steel. It was also

verified by calculation that the additional bending stress due to the slight straightening

tendency of the band between blades is negligibly small. This is because of the large

number of blades, which makes the bowing between blades very slight. Centrifugal

effects can at most add the equivalent of 0.5/1000 inch to the band radius. Therefore,

even if centrifugal growth of the rest of the disk is ignored, the fit should remain tight.

No significant differential thermal effects are expected.

The configuration of the axial gaps is the same as for Configurations 3 and 5,

namely, d'=1.3% and d=26%. The seal tip gap is also as in configuration 3, i.e.,

5/H=0.03. The flow reaches the seal region directly from the stator exit, leaving the

stator with an angle to the axial direction of 0_2= 70 °, and the tangential velocity at the

seal inlet is (Cx)rotortan 70°. Notice that, because of contraction, (c,,),,,,,or< (C,)ro,or. In

addition, the presence of the unrecessed seal acts as an obstacle to the flow and

further reduces c, near the outer casing. Thus, some care must be exercised in

estimating the tangential velocity at the seal inlet (see sec. 6.5).
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Figure 6.1" Machine drawing of shroud.

Figure 6.1: Shroud

Material: Stainless Steel

Scale: 1 to 4

Dimensions: millimeters
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Figure 6.2 Section A-A of shroud. Figure 6.2: Section A-A

Material: Stainless Steel

Scale: 1 to 8

Dimensions: millimeters
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i"
6.3 Turbine Performance. Operating Points

Because of the reduced blade height, down from 23.9mm to 16.3mm, if the wheel

speed and the average pressure remain the same as in the unshrouded turbine we

expect the flow rate for best efficiency to be reduced by approximately the same factor,

to 4.48x(16.3/23.9) = 3.06 kg/s. A series of tests were conducted to verify this and to

select the nominal conditions for the Alford force tests. The optimal result is shown in

Figure 6.3. Figure 6.3 is a graph of efficiency vs. the mass flow rate for the speed of

3440 RPM, which was determined to be the speed where the optimal efficiency lies.

The efficiency was determined from measurements of torque, pressure
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drop and speed. It can be seen from Figure 6.3 that the flow rate which yields the

highest efficiency is rh=3.15 kg/s. These tests were conducted at 2.2 atm mean

pressure and they yielded results close to the simple estimate presented previously. It

was decided, in analogy to the other configurations, to conduct static Alford force

measurements at the pressure of 2.2 atm, at the flow rate of 3.15 kg/s and at (O=0.7(OD,

(o=1.0(OD, and at (o=1 .I(OD. The efficiency levels are similar to those for the unshrouded

turbine. The pressure ratios for 3440 RPM are shown in Figure 6.4 and are somewhat

lower in this shrouded turbine, due to smaller flow acceleration in the stator.

6.4 Force Measurements

The first test series, conducted at 2.2 atm. pressure and 3.2 kg/s, gave (with our

initial data reduction procedures) anomalous force results with a strong asymmetry in

the force-aft direction. A new test series was then conducted at reduced pressure (p =

1.24 atm) and mass flow (r_ = 1.70 kg/s). Once again the forces obtained were not

repeatable and had excessive scatter. Two addition test series were then undertaken...

Therefore, at total of four test series, two taken at 2.2 atm and two taken at 1.24 atm

were completed. Each test series was conducted such that three force readings were

taken at each of the 6 eccentric locations (+15, +10, +4, -4, -10, -15 mils) and the

concentric location and at each of the three speeds, (O=0.7(OD, (o=1.0(OD, and at

(o=1 .l(oD. All the data that were taken had excessive scatter.

The source of this problem was recently found to lie in the triggering of the data

acquisition system. Since the raw data were all available this problem was

correctable through software and the four test series mentioned above were once

again reduced to yield very repeatable results. These data are plotted in the following

twelve figures each corresponding to a particular test at a particular speed. Each

figure shows the direct and cross force (Ibf) vs, the eccentricity (mils) and the

corresponding least squares linear curve fits. The linear fits presented in Figures 6.5
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Figure 6.9:
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through 6.16 were used together with the measured torque values shown in Table 6.1,

the blade height of

H=16.3 mm and the mean radius of Rm=125mm to calculate the force coefficients O_x

and O_y. Note, that in this case, with the shroud, the mean radius is taken from the hub

to the tip of the

blade, not to the tip of the knife edge on the shroud. The Alford coefficients, O_xand O_y,

for each test series and speed are listed in Table 6.2. An average of each row is given

at the bottom of the table. These Alford coefficients are roughly 50% larger than those

obtained in the unshrouded case (for comparison see Table 5.1). For convenience,

Table 6.3 was created which lists all the least squares linear curve fits obtained from

Figures 6.5 through 6.16, with each of them adjusted as if the measurements obtained

were taken at 2.21 atm. For comparison with the results of Sec. 7, Table 6.4 takes the

non-adjusted linear curve fits from Figures 6.5 through 6.16 and createsthe stiffness

coefficients. The stiffness coefficients are given by the following equation:

K="_=lR,.(pi-Po)

Where F._,y is the slope of the line, 6" is the nominal gap, I is the length of the land, R,.
e

is the mean radius and (p_ - po) is the pressure difference across the rotor. These

values can be compared to those obtained from the seals rig, except that here K= < 0

is a restoring force, whereas in Sec. 7.5.2 the opposite convention was used. Note

also, that these contain both, seal and blade (work loss) effects.

S:

156



TABLE 6.1 : Test Conditions and

Test Series

1

1

2

2

I oo/OOD

0.7

1.0

1.1

0.7

1.0

1.12

3 0.7

3

3

4

1.0

4 1.0

4 1.1

Po(atm) I

2.21

2.21

2.21

1.25

1.24

1.24

2.21

2.21

2.21

Measured Torque

rh(k_I/s)

3.22

3.20

Q(N m)

23.68

18.84

3.22 17.32

1.75 13.87

1.70

1.78

3.16

3.19

3.14

1.741.24

1.24 1.75

1.24 1.75

9.76

9.99

23.36

18.27

16.89

13.77

10.69

9.79

Test

Series

1

2

3

4

Ave raa e

TABLE 6.2: Alford Coefficients for the

0_,X

oEOOD=0.7

-4.05

-4.05

O_y

(o/OOD=0.7

6.10

5.88

O_X

oYooD=1.0

-5.58

-6.05

-5.64

Shrouded Turbine

O_y

oY(oD=1.0

6.00

6.91

-4.16 6.11 6.53

-3.98 5.69 -5.26 5.69

-4.06 5.94 -5.63 6.28

(_'X

OEmD=1.1

-5.92

-6.04

-6.22

-5.82

-6.00

6.25

6.36

6.61

6.25

6.37
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TABLE 6.3:

atm.

Slopes of Linear Curve Fits for all Test Series in Ibf/mil. Adjusted to 2.21

Test

Series

1

2

Slopex

evO)D=0.7

-0.134

-0.139

Slopey

evooo=0.7

0.202

0.201

Slopex

evr.OD=1.0

-0.147

-0.147

3 -0.136 0.199 -0.144

4 -0.136 0.195 -0.140

-0.136 0.199Average -0.144

Slopey

evOoD=1.0

0.158

0.168

Slopex

eVe)D=1.1

-0.143

-0.15O

Slopey

eVOOD=I.1

0.151

0.158

0.167 -0.147 0.156

0.151 -0.142 0.152

0.161 '0.145 0.154

TABLE 6.4: Stiffness Coefficients for the Shrouded Turbine

Test

Series

Kxx

oYO)D=0.7

Kxy

ev(0D=0.7

Kxx

ev(OD=1.0

-0.437

Kxx

evO_D=1.1

-0.401

Kxy

evOOD=1.1

1 -0.440 0.662 0.470 0.424

2 -0.448 0.649 -0.412 0.471 -0.479 0.504

3 -0.410 0.602

4 ' -0.469 0.670

-0.435

-0.436

-0.430Average

0.504

0.472

0.4790.646 -0.437-0.441

0.462

0.466

0.464

6.5 Com Darison to Theory_

These data can be compared to theoretical predictions based on a combination

of seal pressure forces (Sec. 7) and blade work losses associated with tip leakage

(Sec.9).
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The seal forces model, as explained in Ref. 9 and modified to account for the

variation of carryover factor with flow (Sec. 7) and for the pressure perturbations

upstream and downstream of the seal can be easily applied here. Aside from the seal

geometry (length, depth, gap, wetted perimeter on rotor and stator, and spin and whirl

rate), the most important input parameters are the inlet and exit pressures along with

their perturbations, and the inlet tangential flow velocity along

with its perturbation. The inlet seal pressure is basically the pressure after the stator.

However, a modification is made to account for the stagnation of the axial momentum

component against the first sealing strip, i.e., adding to the static pressure P2 the
1 2 1 2

dynamic head _p2u_. Since the tangential component _p2(u=2tana2) is preserved,

the correction is relatively small. It is, however, noticeable because the rotor pressure

drop in this low reaction turbine is itself small. The axial velocity u,2 used here has

been determined theoretically taking into account the blockage caused by the shroud

band. First, as mentioned above, the axial velocity component, ux2, of the fluid exiting

the stator stagnates at the sealing strip, however, the tangential component, u_2tan a 2,

is preserved and has the same value as at the exit of the stator. The axial velocity

component at the exit of the stator has to be determined in order to calculate this

tangential velocity component. The axial velocity is first found as if there is no

blockage and then the blockage is taken into account. In order to model this blockage

it is found that the flow in the cross plane is decoupled from the axial flow. This allows

one to model the flow within the test section as a flow within a two-dimensional

channel with a step change in channel height. Upstream the channel has a height of

Hs (representing the height of the stator blades) and downstream the channel has a

height of Hr (representing the height of the rotor blades). The change in height is

accomplished through a step (representing the blockage by the seal). At the corner of

the step is a sink (representing the leakage through the seal). Through a conformal

mapping technique (Schwarz-Christoffel transformation) this problem can be easily

solved for the ratio of the axial velocity with blockage to the axial velocity without

blockage. For the geometry found in this test facility the ratio is found to be 0.7039.

159



The model is linear in the offset, so the stiffnesses are the natural outputs.

These are reduced to coefficient form using the same normalization as used for the

measured data. The averaged measured values given in Table 6.2 and the predicted

theoretical values given in Table 6.5 differ from 3.3% to 7.0% for O_x. Comparison of

O_yrequires accounting for the blade work loss, as will be shown below.

i

TABLE 6.5: Force Coefficients From Labyrinth Seal Theory

(o/(OD

0.7

(zy

3.59

1.0 -5.26 4.52

1.1 -5.81 4.87

It is interesting to understand how the direct force, Fx, comes about. In the

simple form of seal theory, as is explained in Sec. 7, in which the inlet and outlet seal

effective gaps are identical (as are the geometrical gaps in our seal) one would predict

nearly zero direct force. It is only the allowance introduced for variations of the

carryover coefficient that introduce direct forces of the correct order of magnitude, as

shown in Table 6.5.

Regarding the cross-force Fy, the usual Alford mechanism mustbe still active,

although in reduced form, in this shrouded turbine. Indeed, as long as a fraction of the

surviving flows can escape through the seal gap without doing work, the Alford

mechanism remains in place. Once again, this can be explained by the fact that there

will be less work lost in the regions where the gap is reduced by the offset, and vice

versa.

The simplest version of the theory of Sec. 9 is applicable in this case. In this

theory (Sec. 9.2) the fluid which escapes through the gap at the blade tips is taken to

do no work at all. This is inappropriate for unshrouded blades, and is corrected in
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Sec. 9.3, but it fits exactly the condition in a turbine with labyrinth seals on the
]

shrouded band. The only modification isthe inclusion of a factor -_ in the final (Zy

1

result, to account for the fact that the flow rate through a 2-strip seal is _- of that

through a single gap with the same pressure differential.

The results of applying this scheme to our cases are shown in Table 6.6. Notice

that this simple form of the work loss theory predicts zero direct force, therefore, e_x

remains fully attributed to seal pressure forces. The discrepancy between theory and

Fy force measurements is now larger (9% to 27%), but still reasonable.

TABLE 6.6: Work Loss Contributions and Total Force Coefficients, Compared to Data

((_x)seal

-3.83

((Zx)data

-4.06

(_y)work loss I (o_y)seal+w.I.I (O_y)seal

3.59

4.52

4.87

(o_y)data

0.76 4.35 5.94

1.0 . -5.26 -5.63 0.85 5.37 6.28

1.1 -5.81 -6.00 0.92 5.79 6.37

6.6 Flow Measurements

The same flow survey as discussed in Sections. 4 and 5 was carried out for the

shrouded turbine. This was done at the full 2.21 atm. mean loop pressure, and at the

nominal 3440 RPM speed, with the flow rate at 3.15 kg/s.

With the shroud in place, the pressure tap holes at station 4 are before the seal.

One notices a perturbation in pressure at station 4 and this may be viewed in Figure

6.17. The magnitude and phase of this perturbation was used as an input into the

seals theory. These perturbations increase the cross force and have a large effect on

the final theoretical result. The pressure tap holes at station 5 are approximately over
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the first seal knife edge, which is at a location where static pressures are rapidly

changing. This makes their interpretation difficult. The pattern is still very similar to

those observed for the unshrouded cases as Figure 6.18 shows.

Stations 6 and 7 are both inside the labyrinth gland, 6 being near its center and

7 near its exit. The corresponding wall pressures are shown in Figures 6.19 and 6.20.

These show identical nonuniformity patterns, which validates the procedure used in

the labyrinth seals rig, where one fast-response transducer was used to obtain the

gland pressure at each of four locations around the perimeter. CompareJto the

distributions seen in these locations with no shroud, we notice a large increase in

amplitude, by about a factor of two, and also a phase shift away from the region of

maximum gap and towards the 90" location. This shift has the effect of further

increasing the contribution of these pressure forces to the forward-whirling cross force

component Fy. The magnitude and phase of the perturbation in pressure at the exit of

the seal was used as an input into the seals theory to calculate the direct and cross

forces. As in the case of the perturbation in pressure at the inlet to the seal, the

perturbation in pressure at the exit has a large effect on increasing the cross force.

The total forces due to the gland pressure distribution can be calculated using

equations 4.11 and 4.12. The width W used here is 14.2 mm, which is the knife-to-

knife distance, and the radius is R = 125 mm, which corresponds to the end of the

blades (start of the shroud band).
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Figure 6.17:Wall Tap Pressure Distribution at Station 4, Between Stator and

P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 6.18:Wall Tap Pressure at Station 5 Over the First Seal Dam.
atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 6.2o:Wall Tap Pressure Distribution Near the Exit of the Shroud Seal.
The Symbols refer to probe depths at various radial locations. Station 7, P=2.21 atm,
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We find:

Fx = -8.77N

Fy = 11.64N

For non-dimensionalization (Equations 4.1 & 4.2), the torque is Q = 16.8 N-m

and the eccentricity e - 18 mil = 0.46 mm. This gives the coefficients:

(_x = -4.07

(Zy = 5.39

These can be compared to the directly measured values (Table 6.4) of (_x =-5.63 and

(Zy = 6.28, and to the values predicted by the seals theory (O_x=-5.26 and O_y= 4.52).

The agreement with measurements is reasonable, but it must be remembered that the

work defect contribution should be subtracted from the directly measured values

before comparison. Table 6.7 compare these six Alford force coefficients. Note that

the work defect contribution has been subtracted from the dynamometer results.

Table 6.7:

Speed.

Comparison of Alford Force Coefficients at 2.21 atm and Design

Method e_x o_y

Dynamometer minus Alford Component -5.63 5.43

Pressure -4.07 5.39

Theory -5.26 4.52

When this is done, the cross-force, as determined from theory appears to be

underestimated by about 16%, and the cross.force, as determined from the wall tap

pressures, is in good agreement with the dynamometer cross-force. The direct-force

agreement is reasonable.

The flow angle survey at station 8 was not successful, and will have to be

repeated in the near future. This was due to the fact that one of the tow 3-hole probes
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usedwas not properly aligned to the prevailing mean flow angles, and so it was out of

calibration range most of the time. The survey at station 9, further downstream, did

give valid results, and is shown in Figure 6.2_. Here we used a 5-hole probe, which

cannot be inserted past the r/H - 0.76 depth, and so the last four depths shown are all

at this location, and should be coincident. The lack of coincidence gives a measure of

the data scatter. The first three depths (nearest the tip) are in the direct wake of the

seal, but since this station is three chord lengths downstream of the rotor, the wake is

probably sufficiently diffused by then. The underturning shown in Figure 6.2_ is, in

fact, greater than that seen in the unshrouded cases (Sections 4 & 5)
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Figure 6.2_,:Tangential velocities at Station 9. The circle, square, diamond and
X data points are all nearest the core at r/H=0.76.
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7.0 Labyrinth Seals: Static and Dynamic Forces

7.1 FQreword

Our work on labyrinth seal cross-forces has been both experimental and

theoretical. The initial theoretical development [9], [4] produced a linearized model of

the flow in a one-cavity seal, following Iwatsubo's approach [14]. This was used to aid

the design of the test facility and the planning of the test program. Our principal goal

was the clarification of the mechanisms involved in the generation of the forces and,

particularly, of the damping components.

The test facility (LSTF), which was briefly described in Secs. 2.2 and 2.4, was

then used to generate an extensive data base, according to the test matrix explained

in Sec. 3.2, in which we independently varied inlet flow angle, rotor whirl speed, rotor

spin rate, pressure ratio and mean eccentricity for four different one-cavity seals.

These were all of the straight-through type, with teeth on rotor. Two were short (I =

1.02 cm) and two others were longer (I = 1.73 cm), and each was tested with smooth

and honeycomb land surfaces.

When .the test data were correlated to the theory, it was found that the predicted

cross-forces were systematically smaller than those measured by factors between 2

and 3, although the trends were all correctly predicted. Several consistency checks

ruled out most potential sources for the discrepancy. Thus, although the theory uses

relatively crude estimates of the frictional fluid forces, generous allowances for error

there merely shifted the calculated results by +_20%. Similarly, the carryover effects,

and their variation with gap width, introduce significant uncertainty in the direct forces,

but, again, only +_20% on the cross-forces. This will be further discussed below.

At the same time, the results of experiments in the Alford turbine test facility, with

a shroud seal (Sec. 6), showed the presence of pressure nonuniformities ahead of the

seal, an effect not included in our theory (or, to our knowledge, in any other existing

theory). It was thus suspected that this may have been the source of the discrepancy,
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and an extended theory was developed, which accounts for nonuniformities in the pre-

seal inlet cavity. The results of this development confirm the importance of these

effects, and explain many other peculiarities of the data. It is seen that the axial gap in

the face seal separating this inlet cavity from the hub volume has a strong influence on

the seal forces and, in the limit when uninhibited communication exists between inlet

cavity and hub volume, the uniform-inlet results are recovered, while in the opposite

limit, with no radial leakage allowed, the predicted forces consistently exceed

measurements. Since this effect was unexpected, no tight control was exercised in the

tests over this important parameter. However, using our best estimates of the face seal

gap for the various tests, there is substantial agreement between data and theory on

cross-forces, and several other parameters, such as cross-damping and effective

inertia, which the original theory completely missed, are correctly calculated. The

realization that the prediction of seal cross-forces requires careful evaluation of the

inlet nonuniformities is likely to have significant engineering implications.

Because of the close interplay between theoretical arguments and experimental

data, we present first a summary of the theory (a complete account can be found in

Ref. [10]), followed by selected detailed data for one configuration and reduced data

for all cases. We conclude with data vs. theory comparisons and a general discussion.

7.2 Summary of the Theory for Uniform Inlet

We consider here the situation depicted in Fig. 7.1, which shows the main

notation and geometrical parameters. For now, the inlet and exit conditions are

assumed uniform (i.e., Pi, Po, Vi are constant). The shaft executes circular whirl of

speed Q and amplitude r, such that the first and second radial gaps vary according to

81 = _51"- r cos (e - _) (7.1 a)

_2 = 82* -- r cos (e - _) (7.1b)

i
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The mean temperature T of the gas is assumed constant, but fluctuations are assumed

isentropic. The equations of conservation of mass and of tangential momentum in the

seal cavity are

0(pf) + 1 (9 (7.2)
(gt Rss _ (pfV) + q2- ql = 0

OV _v_OV I (V i V)+ f---(gF+xs I -xr(l+ 2h)=0 (7.3)Pf _ + R s 0-0-] - ql - R s 00

where f = I (h + 8) is the cavity cross-sectional area (Fig. 7.1), V is the tangential

velocity in the gland, ql and q2 are the inflow and outflow rates per unit length, and Xs,

'_r are the frictional stresses on stator and rotor gland surfaces, respectively. The

leakage rates are calculated, using a mean-density formulation, as

• / p2 p2

q1= 81.I/V _a._ (7.4a)

/ p2 _ p2

q2=82_2_ / ]_a. o (7.4b)

where Ra is the gas constant. The gap flow coefficients, ).tl, ).t2, are each the product of

a contraction coefficient Cc = 0.65, times a carryover coefficient, 13, which accounts for

non-zero axial momentum of the incoming flow. This is not important in the first gap (in

our design, the turning vane or turning hole discharge jets impinge below the seal

gap), but it is for the second gap in a straight-through design, particularly if the seal is

relatively short. We correlate this effect, following Vermes [15], as

13= 1 a= 8.52 (7.5)
(l-a) 1/2 ' le+7.23

82

where le is the effective seal pitch, accounting for the mean swirl angle of the flow. It is

important to note that 13,and hence l.t2, depends on 82. Thus, at the location of

minimum clearance 82, I.t2 is also minimum, and vice versa. This introduces the same

effect as if the second gap (52 were smaller than 81, namely, flow entering through 81 at
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the narrowest gap location tends to be dammed by the relative "closing" of the second

clearance. This will be further discussed later, as it has major implications in

generating the I;IILQ._I_II2.ID_ component.

Equations (7.2) and (7.3) are solved by linearization about a steady, centered

condition. The zeroth order yields expressions [10] for the mean gland pressure, P*,

the mean leakage rate through both gaps, q*, and the mean tangential velocity V* in

the gland. This differs from Vi, the inlet tangential velocity, only by the relatively small

effects of friction against the stationary and rotating parts of the gland. These

differences are important, however, as one of the two main mechanisms for cross-force

generation, as will be seen shortly.

In the perturbation part, we ignore transient effects and look for steady whirling,

such that the conditions would appear stationary if viewed from the whirling frame.

Then, if (I) = 0 - f2t is the angle measured from the instantaneous location of the

narrowest gap, we have

3__=_f_ a 3 _ 3 (7.6)
_t _ 3o _

The pressure and tangential velocity are linearized as

P=P*(I+_) , V=V*(1+11)

and ql, q2 are expressed as

p*2 _ _r_E_ ]ql =q* 1 Pi2-P,2 _51cosq)

p*2 - -_ COS 00 +
q2 =q* l+p,2_e2 { g2 "

Here, the terms in _ and in r cosq) arise from variations in pressure and

clearance, respectively, while lY in Eq. (7.8b) arises from the carryover variations, i.e.,

lY=lal3/laal '
_3alta52 ] 82 and (_2' = - r cosq). Defining

(7.7)

(7.8a)

(7.8b)
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=
we can write the term _'/[_* as-(K/I_.)r cos$.

The complete perturbation analysis is detailed in Ref. [10]. Here, however, we

wish to focus on the essential points and disregard secondary effects. To that end,

returning to Eqs. (7.2) and (7.3), we will neglect the following effects:

a) In Eq. (7.2), density variations are unimportant. The ratio of the two parts of the
P'f- _ The solution to be obtained

perturbation (pf)' is, in order of magnitude, _ = 7 _--_.

shortly will show this to be small.

b) In Eq. (7.3), both the inertia and the friction force perturbations are unimportant.

For the inertia, compare its perturbation pf (V/Rs) V' to one of the terms in the

perturbation of

ql (Vi- V), namely, qV'. The ratio is-I h V where Vx = (q/pS) is the axial velocity
8R s V x'

in the seal gap. The geometrical group Ih/SRs is -1 typically, while the mean swirl

V/Vx is usually small. This may require re-evaluation at very high inlet swirls. As

to the friction, its variations are of order pVCf I V', and the ratio of this to, again, qV'

I V
is Cf_-_x. Here, although I/8 is large, the small factors Cf and V/Vx make the

c)

product small.
_ p*2

When substituting ql into Eq. (7.3), the pressure part of the perturbation pi_-p, 2

is small compared to the gap variation term - (r/81") cos_. This is again because of

the smallness of F./(r/81*).

With these simplifications, the first order perturbations of Eqs. (7.2) and (7.3) are

( V.)r sin#+pV, Ihd_l+q, ( p*_2 + p_*2 /_
p*lh -_ +-R-_s h- R---sd--_" _p* _ p2 p2_ p'2]

+ q, 1, 82"
1

(7.9)
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and

q, (._, cosc_)(Vi_V,)+q,V,T! +lhp, d..__ _ 051 R s d_

(7.1o)

The velocity perturbation 11can now be isolated from Eq. (7.10) and substituted

into (7.9), to obtain a second-order equation for/_. Expressing the solution in the form

= A cos_ + B sin_, we obtain

(7.10)

L [r + (l-W) D] A2eB=- D

1+ ((_*)2 + (D--_I)2

(7.11)

The following dimensionless groups appear here (in addition to those already

defined):

(_=8__22 L=I-- , D -51-- e----r (7.12)
* ' R s h ' *c51. 51

p'V*51 V* _Rs (7.13)(_= - , W=
q* - V x V*

q" 3_/(p____)2 _2 lAPA= , = -1=
_tlSlP* R'g-_aT

(7.14)

F = V--L- 1 (7.15)
V*

K = x:_5---L (7.16)

l.t2

As Eq. (7.13) shows, o is approximately the mean swirl angle in the gland and W is a

measure of the whirling velocity. From Eq. (7.14), the last expression for A (valid when

AP = Pi - Po << Po) shows that 2A 2-= AP/P* is a measure of the driving pressure

differential. Finally, F (7.15) describes the friction-induced "flow twist", or change in
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swirl velocity.

The significance of A and B is that they are proportional to the direct and cross-

force on the seal, respectively. Projecting in the direction of the seal offset, we

calculate the "direct" or "normal" force

FN=- Pcos0 dt_ Rsl =-A _Rsl P* (7.17)

where a negative FN would indicate a restoring force. Projecting now perpendicular to

the offset, in the direction that would promote forward whirl, we obtain the "cross-force",

or "tangential force"

F T = - P sint_ dt_ Rsl = -B _Rsl P* (7.18)

so that negative B values would drive forward whirl.

We are now in a position to discuss the force generation mechanisms. Starting

with the normal forces, we see from Eq. (7.10) that they arise from the differences

between 52* and (31" (this is represented by 1 - (1/o0 in the numerator), as well as by

the sensitivity of carryover to gap (the K term). In our experiments, (32"= (31", and so

only the latter term survives. This is a modification of the "convergent seal" mechanism

first discussed by Alford [1]. The inlet swirl, (_, does not influence FN. Since K is a

positive quantity, r_storina direct forces are expected.

The more important cross-forces are given by Eq. (7.1 1). We first notice the

proportionality to inlet swirl, or, and the negative sign, at least at small whirl W. This

indicates forward-whirling excitation. There are two distinct contributions to the cross-

force, indicated by the terms F and (1-W)D in the numerator of (7.1 1). The first of these

is related to the flow "twist", i.e., the change in tangential velocity from inlet to gland.

Being a velocity difference, this twist is the same when viewed from the static or from

the whirling frame, and so its effect is independent of whirl W. It thus contributes only

to cross-stiffness, but not to its damping. A physical interpretation of this effect is as
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; i_ follows: Assuming Vi > V*, the fluid entering the seal gland brings with it extra

tangential momentum, which energizes the motion within the gland. On average, this

just compensates for frictional losses; however, more fluid enters the wide-gap region

than its opposite and, as a result, there is a positive dP/de pressure gradient induced

near the wide gap, and a negative dP/de near the narrow gap. Hence, a pressure

maximum develops 90 ° past the wide gap in the swirl direction, and this originates the

cross-force. Because of this description, we can call this the "ejector pump" effect.

The other component, proportional to (1-W)D, can be described as a modified

mass.storage effect. While the ejector pump effect can be understood with reference

to the momentum balance only, the mass storage effect arises, naturally, from the

continuity equation, in particular, from an approximate balance between the first term

in Eq. (7.9) and the sinO part of the third term. In other words, the fluid circulating in the

cavity sees the flow area f changing at a rate -_ + Ih sin_. This can be

=k

accommodated either by changes V_ in the tangential velocity (the second term in Eq.

(7.9)) or by local imbalances in the inlet-outlet gap flows (the third term). If the latter

effect is predominant (as it is in most of our experiments), the pressure nonuniformity

P*_ required to unbalance these gap flows is what creates this cross-force component.

From the description, it can be seen that the effect is dependent upon whirl velocity .Q,

and, in particular, when _ = V*/Rs (W = 1), it disappears. At this point, the fluid

tangential motion just follows the travelling gap width wave, and the fluid sees no area

change: At any whirl speed greater than this, the force contribution is stabilizing.

One important consequence of this mechanism for generation of damping (_,-

dependence of FT) is the possibility of deducing Cxx, the relevant damping coefficient,

from purely static offset measurements. The coefficient Cxx would be proportional to

the factor which multiplies (l-W) in Eq. (7.11), and would therefore be isolated from

cross-force measurements at zero whirl if the F part of the equation were either zero or

separately known. The first route can be implemented by soinnina the rotor to the
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speed at which V* = Vi, which can be verified by exit swirl measurements such as

those reported here. Alternatively, V* can be measured and the F term contribution

calculated, although this involves some uncertainty in the friction coefficients required.

The accuracy of these procedures was verified from our data (Sec. 7.5).

7.3 The Effect of Nonuniform Inlet Conditions

The theory of the previous section is appropriate to cases where a large plenum

volume ahead of the seal ensures pressure uniformity there. This assumption is

routinely made in existing theories [13], [14]. When the inlet plenum is small, however,

its pressure can be strongly influenced by the pressure nonuniformities in the seal

cavity. In turn, for our design, the plenum pressure nonuniformity leads to inlet swirl

variations because, for example, the swirl vane assembly will deliver higher velocity

(both axial and tangential) to plenum regions where the pressure is lower. These

plenum nonuniformities, particularly that in swirl velocity, can, in their turn, have

significant impacts on those in the main seal cavity, and hence on the seal forces. In

addition, for a practical application, there will be new shaft force components arising

from these pressure variations outside the seal. These effects need to be all taken into

account for design purposes, and also in interpreting experimental data. We next

present an extension of the model to this end. In addition to its value in improving

cavity pressure predictions, this extension permits calculation of the true seal inlet

swirl, as distinct from the swirl vane angle. Figure 7.2 shows a cross-section of the

LSTF test section. The swirl vanes which are located li upstream from the first knife

have a radial gap of 5v and deliver air into the first cavity with an effective swirl angle of

O_v.This is the metal angle minus some small turning deviation. This cavity is hi deep

and is sealed from a large volume by an axial fact labyrinth seal with gap 8c. Since

there is no net flow into this center cavity, the pressure here is uniform and the same

as in the swirl cavity, namely Pi*. The continuity equation for the swirl chamber, which
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is analogous to Eq. (7.2) is

a [plih_ + _ _ [plihiV'_ + ql- qv + qc,out- qc,in = 0 (7.19)
Ot Ks at)

where Vi is no longe r constant, qv is the flow rate per unit length issuing from the swirl

vanes, and the qe's are the flows in and out of the center cavity respectively.

Incompressible relations are sufficient for treating these flows since the transfer

velocities are very low. These flows can be written as

qe = I_cfe _ 2p; (Pi- Pil (7.20)

This relation is fundamentally different from those for qv, ql and q2 in that there is no

flow to or from the center volume when the seal is centered in the casing because Pi =

Pi*. This basic nonlinearity is very important and must be dealt with appropriately in

the analysis. Likewise, the momentum equation in this cavity is

aEpl_iv.J + 1 a[Pl'_ivi2] +qlVi_qvVv + qc,outVi- qc,inVc

0t Rs 20 (7.21)

+ "Cs(21 i + h'_- Zrh i + l_ai 0Pi= 0
R s 20

Vc is the swirl velocity inside the center volume. In this cavity, the cross-sectional area,

lihi, and the vane gap, 8v, are constant. However, the inlet swirl component of velocity,

Vv, is not. The angle of the fluid leaving the vanes, O_v,is constant. Therefore, a drop

in the pressure at one location in this cavity will induce a greater mass influx and

hence a higher swirl velocity at that location.

The original equations for the seal gland (Eqs. (7.2) and (7.3) are still valid

within the constraints of the model, but the perturbation inflow conditions rli, _i must be

allowed to be nonzero, thus coupling the seal gland to the upstream cavity.

The same solution procedure used for the single gland seal can be used when

there is no flow into the center cavity. However, as previously stated, the nature of the

oscillating flow between the two upstream volumes is quite different from the others.
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These terms introduce essential nonlinearities into the governing equations of the

upstream cavity.

The physical reason for this difficulty is clear enough. When the two volumes

are nominally at the same pressure, a small positive perturbation in the swirl cavity

pressure P'-imay drive a large leakage perturbation flow, depending on the gap ratio

5v*/51" and the perturbation amplitude, into the center volume relative to the two other

perturbation flows qv and ql. In mathematical terms, the other perturbation flows are of

first order in E1 and hence _, while qc ~ O(_1/2) •

The method for creating a solution will proceed along the same general lines as

before. The steady solution for both chambers is found and then first harmonic

perturbations are substituted into the governing equations. All terms except the center

cavity leakage flow are treated as before. The new terms will be averaged to obtain

their first Fourier component for a harmonic balance. The addition of these terms

creates a nonlinear algebraic system for the perturbation amplitudes.

The zeroth order velocity, pressure and density in the swirl cavity will be

denoted by Vi*, Pi* and Pi* respectively. The pressure and velocity in the swirl cavity

are expressed by the following harmonic perturbation expressions:

pi=P_(1 +_iei(O-_)) , Vi=V_(1 +_iei(O-_t)) (7.22)

where real parts are understood for the perturbation terms.

The perturbation expressions for _i, _i, _, and _ are substituted into the

continuity and momentum equations for both the upstream swirl cavity and the seal

gland. The nondimensional perturbation leakage flow into the center cavity is

$ $

,._ *_-* I/ * p*
_i _1Ol v Pi -

The first harmonic component of this function will be extracted by averaging over one

period. The first harmonic is

(7.23)
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After some manipulation, this reduces to

r .,-4C] =--E-- Jo

where B is the beta function. From this, the first harmonic of qc,out - qc,in is found to be

t . *i- *__ .4o/ ]"=
qc _ 1.57377 --¥_, 1_,-- [_1,2 _i ei(0-_) (7.26)
q* _ 101 Lt'i - P*J

Similarly, the first harmonic of qe,outVi- qc,inVc is

_*[ P_ ]'/2 IF'II-I/21__(V; + V_)_ i ei(0-f_) (7.27)
1.57377 *o'IT,* p*t I_1, 2

I.tlOl Lri - j

Other than these nonlinear terms, additional terms arise coupling the two

cavities' momentum and mass conservation equations, but these are fairly

straightforward, and can be found detailed in Ref. [10]. Altogether then, we now need

to solve a set of four coupled equations for _i, _i, _, and _, where the first two contain

the nonlinearities given by Eqs. (7.26) and (7.27). With zero axial gap (5c* = 0), the

system is still linear, although fully coupled, and can be solved easily. When 5c* is

nonzero, an iteration is required, starting with the 5c* = 0 solution. If those terms in the

mass and momentum equations for the seal which contain _i or Tli are artificially

suppressed, one recovers the uncoupled, or single-cavity, analysis that was described

in Sec. 7.2. A consistency check is provided by solving the fully coupled set, but

artificially increasing the depth hi of the pre-seal chamber. This again produces, in the

limit, the uncoupled results.

7.4 Discussion of Theoretical Results

We give here some selected results pertaining to the configuration of Build #3.

For the single-cavity, uncoupled case, we use:

Rs = 0.1524 m I = 0.01727 m hi =0.00508 m
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51" = 82* = 0.6858 mm Pi = 1.585 x 105 Pa Po = 1.0133 x 105 Pa

Vi = 33.41 m/sec T - 295 K _ = 0.09525 mm

The flow coefficients are I_1 = 0.65 (first gap) and, from Eq. (7.5), _2" - 0.76. The zeroth

order solution provides the mean seal properties:

P* = 1.2861 x 105 Pa q* = 0.1419 Kg/m/sec V* = 32.03 m/sec

which then allow calculation of the following nondimensional parameters:

cz= 1 13"= 1.16 D = 0.1350 H = 0.0333 L - 0.1133

A = 0.720 (_ = 0.245 F = 0.04 el = 0.1390

As a baseline case, we will use K = 0, thus ignoring the carryover variation

effect discussed in Sec. 7.2. We also baseline the case with zero spin co= 0. The

factor K, as calculated from Eqs. (7.16) and (7.9), is 0.1385. The nondimensional

forces are defined by

FN_ FN , FT= FT (7.28)
R s I P* Rsl P*

The calculations were made with the full uncoupled model, as given in Ref. [10], and

the main trends should be as in the simplified discussion of Sec. 7.2.

Figures 7.3 and 7.4 show the effects of carryover variations, from K = 0 to about

twice the theoretical value. Also shown are the effects of whirl rate W = £2Rs/V*. In Fig.

7.3 we verify the basic independence of FN from whirl (very small Cxy), as well as the

fact that when K = 0, the normal force is essentially zero. Nonzero values of K

introduce restoring normal forces. Figure 7.4 shows the damping effect of whirl on the

cross-force. F'_ crosses zero at W slightly above 1, as suggested by the simplified Eq.

(7.11 ), which would give a crossing at W = 1 + F/D = 1.296. The figure also shows a

relatively small, but noticeable, increase of FT with the carryover factor K. This was

missed by Eq. (7.11), and would amount to about 28% at all whirl speeds for the

theoretical K value.
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Figures 7.5 and 7.6 show the effect of various levels of inlet swirl, up to _ = V*/Vx

= 0.9. The effect on FT is essentially a proportionality, as the simplified formulation in

Sec. 7.2 showed. The effects on FN are more complicated. The simplified model

indicated no effect, but Fig. 7.5 shows a coupling of the effects of swirl and whirl speed,

producing curvature (effective mass) and asymmetry (cross-damping, Cxy).

The effect of spin is contained in two nondimensional parameters, namely S =

_Rs/V* and [" = Vi N* - 1. This is because the gland tangential velocity V* depends on

the state of motion of the surfaces in contact with the seal fluid. If S alone is varied, the

effects on both FT and FN are relatively minor (Ref. [10]). If ]-"alone is varying, we

obtain the results shown in Figs. 7.7 and 7.8. The effect on the cross-force FT (Fig. 7.8)

is basically an increase at all whirl speeds, as predicted by the simplified Eq. (7.11).

The effect on FN (not captured by Eq. (7.10)) is a tilting of the curves, which indicates a

slight damping effect (Cxy). Experiments (Sec. 7.5) will confirm this trend, but also

show that its magnitude is grossly underpredicted. This has not been explained, and it

is fortunate that FN plays only a secondary role in rotor-dynamic problems. By

contrast, the trends in FT are confirmed quantitatively by the data. This illustrates one

common theme found in our sensitivity studies: the important force component, FT, is

relatively insensitive to model parameter variations (except _, W, and geometry), while

the direct force FN responds strongly to such variations, including K, frictional forces,

and inlet nonuniformities. One view of this situation is that predicting FN accurately will

be in each case a difficult task, while one can hope to achieve this for both the static

and the damping components of FT. From a different perspective, it would seem that

careful measurements of FN can serve as sensitive and critical tests of future

theoretical refinements.

Other sensitivities to various parameters are shown in Ref. [10], including those

to driving pressure difference Pi- Po (practically a linear scaling), friction coefficients

used, and geometrical modifications. Regarding the latter, it is of interest to notice that
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the simplified Eq. (7.11 ) indicates that the cross-force component due to mass storage

effects (the main part in our baseline case) scales roughly as the group _ where
1 +g2'

- 2glD 2_I'I_IRs This shows that the cross-forces will be largest at g = 1 and will
g.m _

L Ih

be smaller for either deeper or shallower cavities than this. In our baseline case, g =

1.44.

The upstream cavity can have a large effect on the rotordynamic forces. The

parameters that characterize the influence are:

1. The ratio of the swirl cavity area to the seal gland area, lihi/Ihl.

2. The relative size of the axial sealing gap, 5c*/51"

3. The swirl velocity inside the center cavity, Vc. This is strongly influenced by rotation

of the seal disk.

4. The whirl eccentricity, _/51". This is a purely non-linear effect. For the linear system,

all of the forces are directly proportional to the whirl eccentricity.

Each of these effects will now be considered separately.

According to the model, if there is no leakage into the center cavity, the effect of

the upstream coupling always acts to increase the magnitude of both the cross-

stiffness and direct damping and in the same proportions. Figure 7.9 shows the ratio

of the direct damping from the coupled model, with 5c* = 0, to that of the uncoupled one

for various swirl chamber to seal area ratios. As the swirl cavity area approaches zero,

the predicted force augmentation does not vanish but approaches a value of 1.62.

This residual effect in the absence of the first cavity is due to the condition imposed at

the swirl vanes. In the simple model, Vi is constant. If, instead, the vanes are close

coupled, a reduction in the gland pressure will bring in more flow and hence will

induce a higher swirl component locally. The maximum increase in the cross-stiffness

and direct damping over the uncoupled model is about 4.42 and occurs at an area

ratio, lihi/Ihl, of 1.35. Evan at an area ratio of 10, the forces are increased by a factor of
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two. The force predicted by the coupled model asymptotically approaches the

uncoupled one as lihi/Ihl _ _. The two match within 1% for an area ratio of 80. Well

before this value, the assumptions of the model probably break down. In particular,

significant variations in the perturbation quantities are likely to occur in the axial

direction within the swirl cavity.

The presence of the axial clearance between the swirl cavity and the large

center volume permits for a "venting" that reduces the magnitude of _i. This effect

tends to mitigate the large augmentation of the forces that the upstream cavity may

induce. Figure 7.10 shows the direct and cross-force vs. the relative leakage area,

8c*/51". It is assumed that Vc* = Vi* for simplicity. As 5c goes from 0 --) =, both force

components go from the fully coupled value to those predicted by the uncoupled

model. However, this does not occur when Vc _=Vi*. The forces are very sensitive to

small changes in the axial gap when it is less than (51. However, when 5c*/51" > 1,

there is a greatly reduced sensitivity to small changes in axial gap.

The model predicts that the swirl velocity inside the center volume can have a

major impact, on the seal pressure perturbations. For cases where there is no seal

rotation, it is probably safe to say that Vc* = 0. This is because the tangential

momentum fed into the seal is of perturbation order and the shear stresses acting to

retard the flow are O(1). For cases with seal rotation, it would be difficult tG estimate

the swirl velocity inside the center cavity. Figure 7.11 shows the effect that changes in

the center cavity swirl velocity have on the forces.

In the absence of the leakage flow nonlinearity, the theory predicts that the

forces should scale with whirl eccentricity and hence the rotordynamic coefficients, Kij,

Cij, and Mij, should be independent of the whirl amplitude. In the coupled model, the

nonlinearity of the venting rate (Eqs. (7.26), (7.27)) changes this, and the stiffnesses

are now functions of the offset amplitude. Figure 7.12 shows Kxx and Kxy vs. the

relative eccentricity _/(_1". The behavior of Cxx is the same as for Kxy. The direct force
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is much more sensitive to the whirl amplitude than is the cross-force. At large whirl

amplitudes, the predicted forces approach those obtained for 5c* = 0 (i.e. the fully

coupled case). However, as _ _ O, the center leakage flow is able to "kill" the swirl

cavity pressure perturbation at a faster rate than 1E. This effectively decouples the

whirling seal from the upstream cavity, and one recovers the results of the uncoupled

model as _ _ O.

7.5 Experimental Results

7.5.1 Survey of Selected Detailed Data

Builds 3 and 4 were selected for discussion of data in some detail. These are

both "long" seals (I = 1.7 cm), Build 3 with smooth land, and Build 4 with a honeycomb

land. The complete data set for Builds 2 through 5 (Build 1 was superseded by Build

2) is contained in Ref. [10]. This includes additional Builds 3 and 4 data not shown

here. A more generalized data presentation, with less detail, will follow in Sec. 7.5.2.

The general format for this section will be dimensional plots of normal and

tangential forces (in Newtons) vs. whirl frequency (rad/sec), with several other

parameters being varied. The forces are themselves the result of integrations on the

measured pressure nonuniformity patterns, as discussed in Sec. 2.2 and Ref. [4].

In the absence of inlet swirl, the theory of Sec. 7.2 showed that the cross-force

FT must be zero. This is true at _ = 0 (no whirl), but once whirl is introduced the

damping component does produce cross-force. With reference to Eq. (7.11), the

product _W is non-zer0 when V*, and hence _, to go zero, because V* appears in the

denominator of W = _Rs/V*. Experimentally, this is shown in Fig. 7.14. The force FT is

indeed zero at _ = 0, but it is seen to vary linearly with whirl. The increase with seal

pressure ratio is also apparent. Since discharge was to atmosphere, increasing

pressure ratio directly increases the driving pressure difference Pi - Po.

In contrast to the strong dependence of FT on inlet swirl and whirl rate, we saw
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Figure 7.13: Experimentally obtained direct force, FN, vs. the whirl frequency, for five
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with 0° inlet swirl and w - 0.
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in Sec. 7.2 that the direct force (due mainly to the carryover variation effect) should be

basically independent of both, and should be negative. The data in Fig. 7.13 confirm

this. Even with no inlet swirl, the restoring force is present, and it does not vary

appreciably with _. It also scales with pressure differential, i.e. with _s - 1.

Figures 7.15 and 7.16 show the effects of spin still at zero inlet swirl. There is

some evidence of a slight increase in the cross-force FT with spin in the negative

direction (which should promote the flow twist represented by F = Vi/V* - 1), but the

effect is small, as indicated by theory when the inlet swirl is zero. By contrast, the effect

on the direct force FN is much stronger than predicted by theory (Sec. 7.2), illustrating

the general sensitivity of direct forces to various parametric variations.

For a small, but nonzero, amount of inlet swirl (produced by the 15 ° holes), Fig.

7.18 shows the appearance of a cross-stiffness, i.e. a cross-force at zero whirl speed.

The direct forces (Fig. 7.17) are now slightly sensitive to whirl and smaller than without

swirl.

The effect of spin at this inlet swirl is shown in Figs. 7.19 and 7.20. Once again,

the direct force FN (Fig. 7.19) shows the introduction of substantial damping of this

force (sensitivity to whirl) when spin is present. The effect of friction-induced flow twist

is now clearly visible in the cross-forces (Fig. 7.20). This can be compared to the

theoretical results shown in Fig. 7.8. Clearly, spinning in a direction contrary to the

inlet swirl increases the cross-stiffness without affecting the damping (sensitivity to

whirl). The opposite happens when the spin is in the same sense as the inlet swirl,

and the sensitivity to spin is actually greater in this direction.

Similar results, but at a higher inlet swirl angle, are shown in Figs. 7.21 and

7.22. The general level of the cross-forces is now higher, and so is also the sensitivity

to spin, which appears to be symmetric in this case.

A great deal of effort went into characterizing the effect that honeycomb lands

have on the rotordynamic forces. The complete theoretical model [10] includes an
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unsteady mass storage term due to the volume of the honeycomb cells, and it

predicted a 3% reduction in cross-force at the highest frequency when the honeycomb

depth was five times that of the gland seal. On the other hand, the data (with

honeycomb depth close to the gland depth) indicated reductions in the 10-30% range.

This effect was strongest for the longer seal (Build 5), but even for the short (1 cm)

seal, comparison of Builds 2 and 5 shows a cross-force decrease of about 10%. This

difference is, however, of the same order as the overall scatter in the data, so that,

although the effect seems systematic, the level of confidence is not high.

Two possible explanations exist for the cross-force reduction: (a) The

honeycomb acts as a swirl brake. This would have to occur preferentially ahead of the

gland, where the area covered with the honeycomb is very small. On the other hand,

this action would be of importance for multi-cavity seals. (b) The honeycomb breaks

up the jet from the first seal gap, and reduces or destroys the carryover (or at least its

sensitivity to gap width). According to the predictions of the model, totally eliminating

the carryover sensitivity K would reduce the cross-force by about 17% in Build 3. This

is of the order measured, suggesting a nearly total cancellation of the carryover.

Some support for this interpretation comes from the measured discharge coefficient of

the second seal gap, which was 0.85 for the smooth land (Build 3), but only 0.75 with

honeycomb (Build 5).

In contrast with these small changes in the cross-force, the direct force was

dramatically altered by the honeycomb land, to the point of reversing its sign. Once

again, this points at a disruption of the jet carryover, which is the only major source of

direct forces in our case. However, the sign reversal cannot be easily explained in

these terms. Given the strong sensitivity of direct forces to the assumed face seal

clearance in the pre-seal plenum, it is possible that part of the changes may be due to

differences in this clearance between assemblies (this effect was not suspected, and

no precise control was kept of the axial clearance).
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Figures 7.23 and 7.24 illustrate the above discussion. These are for Build 4

(honeycomb) with zero inlet swirl and no spin, and should be compared to Figs. 7.13

and 7.14 where the land was smooth. The reversal (but with relatively small

magnitudes) of FN is most noticeable. Also visible is the ~25% reduction of FT at

comparable pressure ratios.

The behavior of the cross-forces in Build 4 vs. inlet swirl and vs. spin is

comparable to that described for Build 3 (see the extensive data plots in Ref. [10]).

The effects of honeycomb land on the shorter seal (Builds 2 and 5) are less

strong than on the long seal, again pointing at an effect in the first gap jet. We illustrate

this here with a comparison between both components of force measured on Build 2

(smooth land) and in Build 5 (honeycomb), in both cases at zero inlet swirl and zero

spin. Figures 7.25 and 7.26 show the results for the smooth land, and Figs. 7.27 and

7.28 for the honeycomb land. In this case (after accounting for the different

clearances, _), the direct force and the cross-force are cut by about 10% only by the

honeycomb.

7.5.2 N0n-Dimensional Data and Comparisons to Theory

For more compact presentation; the force data were reduced to the form of

stiffness and damping coefficients. Since the FN data showed significant curvature

when plotted vs. whirl, a direct effective mass coefficient was also extracted. This was

not necessary for the cross-forces, where the curves were linear:

FN = _Kxx_ Cxy.Q + Mxx,Q2 (7.29)

= Kxy- Cxx.Q
r

Both stiffnesses are nondimensionalized as

** Kij ;
Kij = I _, (Pi- P9

(7.30)

(7.31)
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Figure 7.23: Experimentally obtained direct force, FN, vs. the whirl frequency for five

different pressure ratios. These data are from build #4 with 0 ° inlet swirl and w = 0.
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and the damping constants are nondimensionalized as

** Cij 51 (7.32)
Cij =

I R2 Vpi (Pi - Poi

The appropriateness of the Pi - Po scalings is shown by Figs. 7.29 through 7.32,

which present all these coefficients vs. pressure ratio for one particular hole plate

angle case (15°). Only Cxy, which is of minor rotordynamic importance, is not well

correlated. For the cross-stiffness Kxy, further collapsing was achieved by normalizing

with the inlet swirl parameter c, which was different for the different points plotted.

Simii_r degree of correlation was obtained for other vane or hole plate angles.

However, the mechanical process of changing the rings carrying these vanes or holes

appears to have allowed small, but significant, modifications in the uncontrolled axial

seal gap 5c (separating the pre-seal cavity from the hub volume). As a result, the

degree of correlation among the various angle sets for each seal configuration is less
$*

satisfactory. This is shown in Fig. 7.34, where Kxy results for all vane angles and for all

• configurations are shown together. The groups of 3-4 data points appearing in

clusters correspond to one particular ring insert, and the differences among points in

any one cluster are due to changes in seal pressure ratio. In Fig. 7.34, each cluster of

points for any one insert shows the expected proportionality with inlet swirl (_, but the

coefficient does vary from cluster to cluster. Averaging over all the data, an

approximate composite correlation gives

** (7.33)
Kxy = 0.36

The lines drawn in Fig. 7.34 are the theoretical results for a range of assumed

axial face seal gaps. This range extends from 5c* = oo (the uncoupled case, where

upstream nonuniformities vanish) to 5c* = 0 (the fully coupled two-cavity limit). The

nominal design value of 5c* = 10 mils is shown, as well as several other 5c* values.

The data points do cluster about the 5c* = 10 mil line (which, in fact, agrees with Eq.
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THEORY EXPERIMENT

o.7oo_ 5"=0.001" m Build _25_=0.005" o Build #3
a Build #4

0.6001 - ..... g_=0.010" + Build #55_=0.020"

o.50oi 6,_ = 0

"" tgzy 0.400

0.300"_ o--

_e" ..-o'""
0.200" /f_ _O'O" O'-. o_.- -- ...... __- ....

o.ooo._ _.-X_='----'-"
0.000 0.075 0.150 0.225 0.300 0.375 0.450 0.525 0.600 0.675 0.750

Cr -- E*V*_*
q*

Figure 7.34: K_ vs. cr for the experimental data and theory. The axial gap, 6c*, is used as

a parameter. All experimental values fall between the theory with 0.004"(0.0001m) < 6* <

0.017(0.0004m).The top thick line is for full coupling (ie. no leakage). The bottom one is

for uniform inlet conditions (ie. no coupling). The calculations are for build #3 geometry.
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(7.33)) but, as noted, there are significant deviations.

Similar, but greater, scattering between assemblies is seen in the normal

forces, Fig. 7.35 presents the normalized K_x coefficients for all builds and all vane

angles. As noted before, Kxx shows greater sensitivity to several parameters. For

example, the data for Build 4 show a great deal of variation with seal pressure ratio

within a particular assembly. This seems to be a reflection of varying carryover,

exacerbated here by interference from the honeycomb land. The range of theoretical

Kxx results obtained with various 5c* values is shown in Fig. 7.36. Here, the

honeycomb land results exceed even the fully coupled limit, while the smooth land

results fall near the uncoupled theoretical line. However, as noted, the difference here

is most likely due to carryover effects rather than to 5c* variations.

The important damping coefficient, C××, correlates to about the same extent as

Kxy, and is also predictable to a comparable extent from theory. Figure 7.37 shows the

Cxx data for all builds. As discussed in Sec. 7.2, one important consequence of our

elucidation of the mechanism for producing whirl-dependent cross-forces is the

possibility ofextracting Cxx from only static cross-force data. This is shown in Table

7.1, where the dynamically measured C_ and the C;_ deduced from _. = 0 data are

compared for all builds. The static method produces C×x values which are 13-28% too

high, an excellent agreement level considering the many separate measurements that

went into the statically derived Cx×.

We close by commenting briefly on the application of our new understanding of

upstream nonuniformity effects to the data of Benckert and Wachter (Ref. 28). This set

of static data on various seal configurations has long been used as a benchmark for

various theoretical efforts. Several researchers have reported agreement to within

+20% with their _ seal data (Refs. 29, 30, 31 ), but no model has been able to

match their 2- and 3-cavity seal data. Benckert and Wachter report pressure

nonuniformity levels in the first chamber of their seals which are 2-3 times higher than ?
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Figure 7.35: The effect of inlet swirl on the direct stiffness coefficient, K_, for builds

#2(narrow rotor-smooth land), #3(wide rotor-smooth land), #4(wide rotor- honeycomb

land) and #5(narrow rotor- honeycomb land), e1=0.1407.
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Figure 7.36: K_ vs _r. for the experimental data and theory for builds 3 (smooth land) and

4 (honeycomb land), a_ = 15 °, w = 0 and el = 0.1407. $_ is used as a parameter.
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Figure 7.37: The effect of inlet swirl on the direct damping coefficient, Cy, for builds

_2(narrow rotor-smooth land), #3(wide rotor-smooth land), _4(wide rotor- honeycomb

land) and #5(narrow rotor- honeycomb land), e1--0.1407.
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BUILD#

2

3

4

5

c:;

0.372 7763 953 0.289

0.416 27821 3162 0.371

0.283 20001 3162 0.247

0.338 7053 953 0.231

Composite 0.357

Data 0.357

of 0.423

Benckert 0.265

From Static Measured

Correlation Directly

oo. o..
22.70 19.95

82.19 75.80

56.13 48.54

20.33 15.81

Table 7.1 The firstcolumn shows the cross-stiffnesscorrelationfor allbuildsand for the

staticdata ofBenckert [28]The next two columns show the totalcrossforceand frictional

(,ad,_ and design pressure ratio. The next column
component evaluated at f_d = 300 xa-;'_'/
is the measured nondlmensional directdamping coefficient.The finaltwo columns give

the damping calculatedfrom the cross-stiffnesscoefficientand the average value that was

directlymeasured.
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1

3

Fr(meas.)

to.21(N)

8 28(.N)

11 91(N)

Fr(6"= 0)

16.28(N)

16.15(N)

_5.51(N)

Fr(_;= oo)

4.99(N)

4.25(N)

4.09(N)

0.008"

0.011"

0.010"

Table 7.2 Comparison of the data of Benckert and Wachter [28] to the coupled model

predictions. All cases are for standard conditions. Pi = 1.58 (bar), Po = 1 (bar) and

a_. = 28.4 °. The first column shows the experimental value. The second column gives

the value predicted with full coupling, that is no leakage flow. The third column has the

predictions for constant upstream boundary conditions. The last column gives the value of

the a.x.ial space needed for the model to match the experimentally obtained value.

211



the models predict. For the remaining chambers, the agreement to theory is much

better.

All the models used constant upstream boundary conditions. However, the test

section in the apparatus of Benckert and Wachter is quite similar to ours, in that swirl

vanes feed a swirl cavity which is nominally sealed by an axial clearance from a large

central cavity, and so the suspicion arises that undetected upstream nonuniformities

must have played an important role in their case as well. No information was reported

on the axial clearance used, but we can compare data for three of their configurations

with the theoretical limits of 8c* = = (the implicit assumption of previous models) and

8c* = 0 (our fully-coupled limit). The results (Table 7.2) show that the measured cross-

forces on the first seal cavity are much more closely predicted by the 8c* = 0 limit than

by the usual uncoupled models.

7.6 Summary and Conclusions

A large body of fluid force data was obtained for several 1-cavity labyrinth seals

under realistic controlled whirl conditions. The combined use of experiment and

theory allowed clarification of several mechanisms and effects of importance for

rotordynamic applications:

• Seal cross-forces are proportional to inlet swirl and to driving pressure difference.

Direct forces are largely insensitive to inlet swirl.

• Direct forces in throughflow labyrinths with equal inlet and exit clearances are

mainly due to variations with clearance of the carryover coefficient for the exit gap.

• There are two main mechanisms producing cross-forces: one is an inviscid mass

storage effect, which is proportional to the cavity fluid tangential velocity with

respect to the whirling frame; the other mechanism is friction-related, and is

proportional to the decrease in tangential velocity between inlet and cavity. In

addition, carryover variations add ~20% to the cross-forces.
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• The first of these mechanisms leads directly to a linear decrease of cross-force with

whirl speed, and is almost exclusively responsible for the direct damping coefficient

Cxx. The second and third mechanisms affects Kxy but not Cxx.

• Because of the above, Cxx can be extracted from purely static seal force test data,

with no need for actual whirling.

• Honeycomb lands appear to interfere with carryover, and hence strongly affect

direct forces. Their influence on cross-forces is limited due to the limited

contribution of carryover to these forces.

• We have identified a very important influence of the nonuniformities existing

upstream of the seal on the seal forces. This nonuniformity is coupled to those in

the seal cavity, and its magnitude depends additionally on the leakage allowed

between the pre-swirl cavity and uniform regions, such as the hub volume.

• For the relative size of our pre-swirl cavity, the above effects lead to variations by

factors of 3-4 in the labyrinth seal forces. It is clear that designers must account for

such effects in assessing the rotordynamic effects of seals. The analysis will have

to be dependent on the pre-seal configuration of each application.
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8.0 Dynamic Alford Force Investi_oation

8.1 Back_oround

As discussed in Sec. 1, considerable effort was devoted to modifying the

apparatus and data gathering techniques in order to investigate the possible effects of

non-static turbine offsets. A literature review on the subject revealed no prior data on

dynamic Alford forces on unshrouded turbines. For turbines with a shroud band and a

tip labyrinth seal, Wohlrab [6] did present some data, but only for effective whirl to spin

rate ratios O./e)in the range 0.1-0.15. Most incidences of unstable whirl have been

observed at about OJe) = 0.5 (Ref. [16]), primarily because modern turbines tend to

operate at about twice their first transverse mode frequency. Wohlrab was able to

detect a decrease of cross-force Fy by about 15% in his O.Jo_range, although the exact

conditions were not documented. In any case, this was almost certainly attributable to

the well known damping properties of the labyrinth seal (see our Sec. 7), and has no

direct relevance to unshrouded turbines.

The theoretical background is also quite deficient. Our simplified X-Y actuator

disk theory [17] predicted a 10-20% decrease of Fy for OJe) = 0.5.

The more refined theory explained in Sec. 9.3 of this report indicates larger

damping for our turbine, but only if the upstream flow redistribution is fully allowed for.

It is argued in Sec. 9.3.8 that the finite axial gaps between stator and rotor (both

between blades and between hubs) must have the effect of reducing this redistribution

substantially, and hence of also reducing the dynamic effects on Alford forces. The

reason for this connection between XY redistribution and dynamic effects is simply the

fact that the reduced frequency _R/cx, appropriate to the redistribution length scale R,

is of order unity, whereas the reduced frequency _H/Cx, appropriate to the radial

migration effects in the absence of tangential redistribution, is only of order 0.2. Thus,

if the upstream flow does not reorganize on the R-scale, the flow through the stage will

respond essentially quasi-statically to whirling frequencies, and no dynamic effects will

i
,4:
ii
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appear.

The importance of improving our understanding of the dynamic Alford effects is

obvious. It could, in fact, happen that whatever Kxy stiffness may exist under static

conditions would be negated by the dynamic damping. The dynamic effects of this

damping, are somewhat non-intuitive, due to the circular whirling trajectory. Consider

a mass M with axial symmetry, restrained centrally by an elastic stiffness Ko and with

ordinary damping Co. In addition, suppose the fluid forces are of the general form

Fx = Kxx e x - Kxy ey + Cxx _x - Cxy ey (8.1)

Fy = Kxy ex + Kxx ey + Cxy ex + Cyy (_y (8.2)

Here Kxx and Cxx would be positive if they destabilize the motion (this is

negative stiffness and damping in the ordinary sense, but the sign is chosen to

conform to our experimental Alford force convention). Also, Kxy would be positive for

whirling in the sense X --->Y. The normal C o damping simply reduces Cxx.

We can solve the shaft equations of motion using the structural stiffness Ko and

Co, plus Eqs. (8.1) and (8.2) by assuming a complex displacement vector z = ex + iey

= _ ei_t, as suggested by the circular symmetry. The imaginary part of f_ will indicate

damping (if positive) or growth (if negative). It is found that, provided IKijl << Ko and O,

ICijl << Ko,

,ir__(/Mf_-+ 1 -2+i kxx + _xY+ i (+12 kxy- _xx) (8.3)

where

kij = Kij Cij
K--_ ' ;iJ= 21_o M (8.4)

Two things can be noticed about Eq. (8.3). First, one of the two roots will be

_" kxy term. This is the expected effect of the Alford cross-force.unstable due to the i _-

Second, damping is pro-vided by -_xx (i.e., by -Cxx), and not by -Cxy, as would appear

intuitively to be the case. The cross-force damping Cxy simply changes slightly the
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whirl frequency, as does the direct stiffness Kxx.

8.2 Implementation

The kinematics of our test facility allows for dynamic turbine offset along one

axis (called here the OX axis). At the same time, the instrumentation allows for real

time monitoring of all components of force on the turbine during this motion. The

forces are first sensed in the rotating frame, but can be projected to fixed axes, so that,

in principle, records of both Fx(t) and Fy(t) (at right angles to the offset motion) can be

obtained versus time. According to the discussion above, the task at hand is the

extraction of Cxx from these records. With reference to E-i. (8.1), since ey - 0, and

assuming ex = e cos _t, we obtain

Fx= e (Kxx cos f_t - D-Cxx sin f_t)

= e _/K2x + (.QCxx)2 cos D.t + tan-11 Kxx I] (8.5)

Equation (8.5) indicates two possible routes for obtaining Cxx: (a) through a force

• magnitude increase for a given displacement amplitude, and (b) through a phase shift

tan-1 (D-Cxx/Kxx) between force Fx(t) and displacement ex(t). The latter Should be more

sensitive, particularly at relatively small values of the damping force _Cxx e compared

to the stiffness force Kxxe. A similar procedure can also be used for determining Cxy

from Fy(t).

Whereas for static tests both Fx and Fy are obtained from the dynamometer data

with about equal precision, the situation is more complex in the dynamic case because

of inertia forces. If the mass of the turbine is Mt (about 7.2 kg in our case), the

dynamometer senses an inertia force Fx = -Mt _x as well as the aerodynamic forces. In

terms of ex = e cos _t, the total Fx signal will then be

F x = e [(MtD. 2 + Kxx) cos D-t- D-Cxx sin D.t] (8.6)

In order of magnitude, Kxx -=--1 Ib/10 mil = -1.75 x 104 N/m, whereas, at D- = @ CODES.,

/

/
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Mt _2 ___-7.2 x (180) 2 = 2.33 x 105 N/m. If we assume, as a probable upper bound, that

the damping from

-Cxx eliminates fully the static Kxy effect, we see from Eqs. (8.3) and (8.4) that I_Cxx I =

IKxxl. In that case, the phase angle of Fx(t) with respect to ex(t) will be

= tan-1 _Cxx = tan-1 1.75 x 104 _ 4.6 °
Mt.Q 2 + Kxx 2.33 x 105 - 1.75 x 104

This indicates that, in order to resolve damping coefficients capable of changing

the net (dynamic) Alford effect by +20%, we need to resolve relative phase angles to

about +1°. This is a significant experimental challenge, which we have not

successfully met so far. In what follows, we will discuss the rig modifications that were

introduced to this end and the limited data set that was obtained, and will give an

assessment of the feasibility of quantitatively resolving the issue in a future effort.

8.3 Apparatus

The linear dynamic offsets of the turbine were forced by a matched pair of

inertial shakers (VIBCO, Model 4P-700, element No. 11 in Fig. 2.3). Each of them

features a rotor with an adjustable imbalance. Using a synchronized counterrotating

pair, as shown in Fig. 2.3, produces inertial forces along one axis, in our case along

the axis of the rods supporting the turbine shaft. The effective linear force produced,

depending on eccentricity setting and speed, ranges up to 700 Ibf (each) at 1800 rpm.

The mass to be shaken (turbine and shaft, bearing assembly, shakers, mounting plate)

can be estimated at about 150 kg, and assuming _ _<@ CODES.-= 180 rad/sec and e _

0.4 mm = 1.6 rail, we need a maximum force of M_2e = 440 Ibf, well within the shaker

ratings.

The matched pair is normally used, according to the manufacturer, without any

hardware synchronization, because the rotors tend to "lock" in sympathy in response

to the structure's vibration. However, when this mode of operation was attempted in
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our rig, it was found that no synchronization occurred. Instead, there was a slight

speed difference (the shakers have induction motors, which can have slightly different

slips), so that the unbalanced forces were in a gradually shifting relation to each other,

and resulted in periods of very strong and periods of very weak vibration. This

behavior is probably related to the large dry friction of the rod linear bearings (about

60 Ibf), which is a result of their very close packing for high precision. At speeds low

enough that the shaker force was below this dry friction, no vibration was happening

(the structure, as a whole, is very rigid), and self-synchronization was not occurring.

Given the nearly random direction and strength of the forces from the unsynchronized

pair, it was not thought prudent to increase the speed to the point where friction would

be overcome and locking would occur. Instead, a timing belt arrangement was built

into the back end of the shakers (Fig. 8.1), and this proved satisfactory throughout the

operations.

2

4

Fig. 8.1: Shaker synchronizer
1. Idler

2. Shaker
3. Shaker
4. Timing Belt

The shakers operate with no connection to any external base, and so they
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provide no absolute position anchoring, and a centering device is required. This took

the form of a spring whose neutral position is at the centered turbine location. The

initial version of this spring is seen in Fig. 2.3 as a flexible plate mounted between the

shaker assembly and the main plate, and supporting the shaker assembly from below.

This initial design proved inadequate and failed in tests. The final design and relevant

considerations are reviewed next.

The spring must (a) be strong enough to provide centering within about 1/1000"

against the 60 Ibf (266 N) of linear bearing dry friction, (b) allow a linear motion

amplitude of about +12/1000" (3x10 -4 m), and (c) have resonances outside of the

desired shaking frequency range of 17-30 Hz (38 to 50% of design turbine speed). In

addition, it must be dimensioned to fit in the available 1 inch space between the main

mounting plate and the shaker assembly vertical mounting plate, and it must not

buckle under the weight of the shaker assembly.

If the design is for a soft spring, with natural frequency below 17 Hz, the dead

band due to the dry friction is too large. For example, for a natural frequency o_o = 10

Hz, the spring stiffness would be 150 x (10 x 2_) 2 = 5.9 x 105 N/m, and the dead band

would be Ae = 266 N/5.9 x 10`5N/m = 4.5 x 10-4 m = 18.0/1000 inch, clearly too large.

In fact, if we wish to reduce this dead band to 1/1000", the design stiffness must be 18

x 5.9 x 105 = 1.06 x 107 N/m, which yields a natural frequency coo = 10 _ = 42.5 Hz.

This is then high enough above the intended shaking frequencies. Thus, the "hard

spring" design can indeed satisfy both, centering precision and resonance avoidance

requirements. The requirement to allow a 12 mil deflection proves difficult to meet,

however. The first design, with a single flexible plate acting as a beam-column, is

shown in Fig. 8.2.
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_, D = 3" _--_-

Fig. 8.2: First spring design

Using the equation K = 12 EI/L 2, where I = H3D/12, and with the modulus E for

steel, the required thickness H for K = 1.06 x 107 N/m is 2.24 mm. This relatively large

thickness leads to large maximum stresses in the flexure. For a deflection B = 0.3 mm

= 12 mil, (_MAX - 3EHS/L2 = 6.25 x 108 N/m 2, which is above the strength of ordinary

spring steel.

This difficulty, which was not initially recognized, led to a redesign using a

multiplicity of thinner plates, as shown in Fig. 8.3. Using N such plates, each with

stiffness K1, the total stiffness is K = NK 1, and since K ~ H3, for the same total K, the

individual thickness H 1 is H 1 = H/N 1/3, and stress is reduced in the same proportion.

With N = 40, the individual thickness and stress are

H1 = 2.24 mm / N 1/3 = 0.65 mm

a 1 = 6.25 x 108 / N 1/3 = 1:83 x 108 N/m2

which is now acceptable. It can be verified that other stresses (column loading, shear)

are comparatively small, and that the buckling load is much higher than expected

vertical loads.

The design in Fig. 8.3 consists of a stack of 40 steel plates, held in place by

three tie rods which clamp a split frame. Each plate is separated from its neighbors by

25 mil spacers, to minimize rubbing during deflections. For additional safety, the

number of plates was later raised to 50. This design proved satisfactory.

220



C

rO

i

_°.. ,

J

_ - ®__

i _J

i

!

J

,''- --.., -"T"

t 221 i

i

i

!
i

i

f_

m_

_r

I
7

a

I

I

CO

_0

o-_



I_"11
l_.,..<.wll

A ¸ ,dTL
iI ,I

i IIt

I I I I

k •

_l J............... _L_

I I!

®I

Jl ,l

-'-" ................... ;l-
II II

-',I ':
--il i i LL---

i, LL_
I ...................... I. I

---I I ii i'i

................ i' II.__.-:=--------_I='---=
L-.-.-.-.-.-.-.-.-_=-- --"_'=--==:=:= I__..___--

I I II
I I

II ,,I
i i i I

LL LI___L|LLLI

%
t

iI
I

ii -.

' I! i

I I

ii ......
rl--

I
II

I !

II

Ii

k.._ _ LLLI

p

I l II i
i ,,I. I i

i

o'i
I

J

ol
.H
I>

o
.rl
IJ

U
rq

14

hi)
-H



8.4 Measured Displacements and Forces

In view of the large contribution of inertia to the Fx force component, a

preliminary investigation was made of the magnitude and phase of these forces, as

well as of the linear shaking amplitude under various conditions. An effort was also

made to model the shaker dynamics, as affected by bearing dry friction.

The shaker was operated in vacuum, at P = 1 atm and at P = 2 atm, with the

turbine running at its nominal speed in all cases, and at its nominal flow rates in the

last two. The turbine was motor-driven in vacuum. The procedures used to take data

under dynamic conditions were as follows"

(a) Set and stabilize the turbine running conditions, in the centered position.

(b) Set the shaker amplitude, and bring its frequency to the desired value. Observe

the proximeter output in an oscilloscope to verify proper operation.

(c) Use an external clock signal to determine the data sampling times (approximately

72 per cycle). Sample all dynamometer channels, plus proximeter.

(d) Correct for the small variations in shaker speed (_+1%) by dividing the record into

cycles and interpolating the data to a fixed number of points per cycle.

(e) Average over a large number (~100) of cycles (phase-locked filtering).

(f) Extract the first harmonic of each signal (magnitude and phase with respect to the

shaker linear motion).

The amplitudes and phases of ex (zero phase by definition), Fx and Fy are listed

in Tables 8.1,8.2; and 8.3. The phase angle is defined by, for instance, Fx = Fx sin(.Qt -

ex). The run number is also listed, for reference.

The values given in the tables are averages for each run. A sample of the

instantaneous ex data (in raw form) is shown in Figs. 8.4 and 8.5. Considerable

modulation is observed, for reasons that were not sufficiently investigated, and this

produces uncertainty of up to _+20% in ex. As Fig. 8.5 shows, the individual

displacement cycles were reasonably sinusoidal, indicating that dry friction, although
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present, was not large enough to create stopping periods at peak displacement.

The magnitude of Fx is largely determined by inertia forces, as discussed in

Sec. 8.2. This is verified in Table 8.4, where we collect the mean values of the

measured Px values, together with the values calculated from Fx = Mt _2 ex, with Mt =

7.2 Kg and using the measured _ and ex. The agreement is reasonably good, and the

scatter appears tO be mainly random. The ratio Fx/ex is slightly lower for conditions

with flow. This reflects the negative sign of the fluid Kxx coefficient,

Run #

1143

1145

1152

1146

1157

1151

1160

1163

TABLE 8.1
DYNAMIC FORCES IN VACUUM

e Imil)

0

0

0

6

6

8

8

11

0../(0D

0

0

0

0.4

0.4

0.45

0.45

0.5

Fx (Ibf)

0.0226

0.0311

0.2922

6.952

4.855

9.977

6.355

15.595

ex (o)

26.43

20.54

19.08

22.74

22.08

Fy (Ibf)

-0.0132

-0.0253

-0.0928

0.863

0.522

0.426

0.466

0.684

ey (o)

11.26

-10.28

14.84

-69.84

13.94

224



Run #

1125

1126

1127

1134

1131

1133

1138

1139

1128

1129

TABLE
DYNAMIC FORCES

e/mid
0

0

0

8

11

11

11

11

12

12

f_.,/O)D

0

0

0

0.4

0.45

0.45

0.45

0.45

0.5

0.5

I Fx (Ibf)

0.332

0.280

0.231

7.334

11.279

11.263

1O.889

10.871

17.81

17.98

8.2
AT P = 1 atm

I  x(°l I

17.21

7.00

7.10

+8.83

9.21

38.3

20.53

TABLE 8.3
DYNAMIC FORCES AT P = 2 atm

Fy (Ibf)

-0.316

-0.212

-0.168

0.317

0.625

0.628

0.553

0.536

0.613

0.185

By(o)

48.79
I

-52.18

-47.06

-51.90

-54.89

68.45

-77.28

Run #

1164

1165

1166

1173

1174

1175

1179

1180

1171

1176

1169

e (mil)

0

0

0

6

6

6

6

6

10

10

12.2

0

0

0

0.4

0.4

0.4

0.4

0.4

0.45

0.45

0.5

I Fx (Ibf)

0.117

0.302

0.252

4.829

4.850

5.015

6.236

6.416

10.377

10.54

16.100

ex(o)

12.37

11.96

12.23

12.00

12.52

12.80

12.70

2.90

Ey (Ibf)

-0.546

-0.289

-0.505

0.411

0.391

0.395

0.350

0.362

0.843

0.866

1.259

By(o)

3.17

2.17

9.71

1.01

0.91

-25.68

-30.92

49.33
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A

which, as noted in Sec. 8.2, should lower Ex at _ = @ CODES, P -- 2 atm, by

approximately

Kxx/Mt _t "" 0.07. This is indeed of the order shown in Table 8.4 for .Q = 1720 rpm, P =

2 atm.

TABLE 8.4

MEASURED AND CALCULATED (INERTIAL) Fx AMPLITUDES

P (atm)

0

0

0

0

1

1

1

1

2

2

2

2

f_ (rpm)

1376

1548

1720

1376

1548

1720

1376

1548

1720

e (nail)

0

6

8

11

0

8

11

12

0

6

10

12.2

Fx (lb)

(meas., avg.)

0.12

5.90

8.17

15.60

0.28

7.33

11.08

17.90

0.19

5.47

10.46

16.10

F x fib)
(me.)

0

5.13

8.65

14.69

0

6.84

11.90

16.02

0

5.13

10.82

16.29

E = -0.33 lb

o = 0.65 lb

g=01b

= 0.28 lb

The phase angles ex and ey are more erratic. Particularly for P = 2 atm, most of

the ex values are within one degree, but unexplained jumps can be seen occasionally.

This seems to be mostly due to the difficulty in completely filtering out the high

frequency turbine ringing forces, as well as occasional noise in the proximeter data.
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The high frequency effects are illustrated in Fig. 8.6, which is an ensemble-averaged

record of the in-line force measured over slightly over one shaking cycle (72

samples/cycle). The conditions were P = 2 atm, _ = 0.45 O)D = 1548 rpm, nominal flow

rate. One can discern a first harmonic force, with an amplitude of 12-15 Ibf (maximum

at points #15 and #80, minimum at point #55). However, this first harmonic, which is

used to extract the Fx data in Tables 8.1-8.3, is masked by a very prominent

superimposed signal at about 6/cycle (i.e., at about 9300 rpm). This extra force has a

modulated amplitude, peaking at about the same point as the first harmonic (with peak

value of over 20 Ibf), and decreasing to a minimum amplitude of 6-7 Ibf at mid-cycle.

The frequency of this signal is close to the lower branch of the pair into which turbine

rotation splits the first transverse mode, i.e. coo- co= 12,700 - 3440 = 9260 rpm (Ref.

[4]). An approximate analysis of this effect is given later (Sec. 8.6).

8.5 Dynamic Model of $heken Turbine

The presence of dry friction in the linear shaker bearings introduces nonlinearity

into the dynamics, and can be the source of the observed excitation of the higher

modes. The first consideration should be the modeling of the displacement x(t) of the

turbine shaft, assuming it to be stiff enough to allow neglect of the higher modes.

Because of the sudden changes of sign of the dry friction at points of zero _(t),

discontinuities appear in the higher derivatives of x(t), which give x(t) a full spectrum of

higher harmonics. It is these higher harmonics that can then excite the shaft modes,

and this can be subsequently analyzed.

Let x be the absolute linear displacement of the turbine and its bearing

assembly (of mass M), and Xs the absolute displacement of the unbalanced effective

shaker mass Ms. The synchronized pair arrangement produces a relative harmonic

motion

Xs - x = es sin _t (8.7)
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Because of this, the force along 0X which the mass Ms exerts on the mass M must be

Fs=-Ms =-Ms esa2sinnO (8.8)

The dry friction force from the linear bearings is taken to be independent of speed:

Fricti°n f°rce = {_FFff when _>0when _ < 0 (8.9)

In addition, the spring support adds a force -Kx. The equation of motion of the

mass M is then

M_ = -Kx - M s (_ - es n 2 sin nt)- Ff sg(_) (8.10)

where sg(_) is +_1 depending on the sign of _, Reorganizing, and calling MT = M + Ms,

MT_ + Kx = Mse s £_2 sin nt - Ff sg (:_) (8.11 )

This nonlinear dynamic problem was analyzed by Den Hartog Ref. [32] who

identified steady-state regimes with none, two or more than two stops per cycle, and

gave analytical descriptions of the first two of these regimes. We have performed

numerical integrations of Eq. (8.11 ), in the dimensionless form

Po sg(F_) (8.12)
v2d2_ + _2 = sin xdx 2

where

_ MT
- Mse------_x

V =-'Q'C0o " Coo= ,_M_TM-K-T

Ff

Po = MsesCoo2

Using Mses = 0.082 Kgm, MT = 150 Kg, coo = 285 rad/sec (2724 rpm), and Ff =

60 Ibf - 266 N, we calculate Po = 0.04. The calculated amplitudes _ proved to be fairly

(8.13)

(8.14)

(8.15)

(8.16)
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insensitive to the precise value of Po up to about 0.08. For Po = 0.04, the wave pattern

_('c) shows no stops for "c> 0.48 (D > 1300 rpm), and two stops below this forcing

frequency. Some amplitude values are listed (in both dimensionless and dimensional

form) in Table 8.5.

SHAKING

TABLE 8.5
AMPLITUDES VERSUS SHAKING

CALCULATED FOR Po = 0.04

FREQUENCY,

j

V

D (rpm)

(mil)

0.404

(1100)

0.186

(4.0O)

0.441

(1200)

0.238

(5,12)

0.514

(1400)

0.359

(7.42)

0.587

(1600)

0.526

(11.32)

0.624

(1700)

0.637

(13.72)

These calculated amplitudes are compared to the data of Table 8.4 in Fig. 8.7.

Aside from the obvious scatter, it is to be noted that, at least for the 1 atm case, the data

showed no motion for D < 1100 rpm, while the calculations would indicate zero motion

(non-starting due to dry friction) only for D ___520 rpm. Reproducing this threshold

behavior would have required Ff levels much higher than were measured directly.

Thus, the simple dry friction model is not completely satisfactory.
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8.6 Excitation of Hi aher Modes

It was mentioned before that high frequency ringing such as observed in Fig.

8.6 seriously interferes with precise measurements of Fx. If the motion x(t) of the

turbine shaft is known, the inertial excitation force -Mt Y=acting on the turbine mass Mt

can be calculated, and the resulting high frequency vibrations can be analyzed. More

precisely, Mt here must represent the effective mass of a higher mode (of natural

frequency _) under the given inertial excitation. If xt represents the relative

displacement of this effective vibrating mass, then

xt + 0)2 xt = __ (8.17)

where x(t)is the solution to Eq. (8.11).

For the present purposes, a Fourier representation of x(t) is most appropriate.

This approach was also indicated by Den Hartog [32], and uses the fact that, as long

as there are no stops, the friction force is a square-wave function with a simple Fourier

expansion:

Ff sg(f,) = 4F___£___ sin nD. (t- tl) (8.18)
_x n

n=l,3 ....

where tl is the time at which x peaks, to be found presently.

Using this representation in Eq. (8.11), we easily calculate

X --'_

dO

Mses _2
0)2o_Q2sinf_t-_4--_F,fr_ivLT E sinnD'(t-tl) (8.19)n=l,3 .... 0)2 - n2Q2MT

The time tl now follows from _(tl) = 0:

do

cos D'tl = 4 (0)2 "Q'2) Ff E ] (8.20)

_; Mse sD, n=l,3 .... 0)2_n2Q 2

At first sight, Eqs. (8.19) and (8.20) show singularities at f_ = o_/3, o_o/5, ... (in addition

to f_ = 0)0, the normal resonance). However, at these low frequencies, it can be

verified that stops do occur and the expansion (8.18) is invalid (this distinction is not
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explicitly made in Ref. [32]). Direct numerical simulations, in fact, show finite limit

cycles for all Ff at these subharmonic frequencies. In our experiments, COo= 2720 rpm,

and f_ > 1100 rpm, which is high enough to ensure oscillations with no stops, for which

Eqs. (8.19) and (8.20) are valid.

Using Eq. (8.19) in the right-hand side of (8.17), we can calculate xt (t) and, of

more direct interest, the force Ft = -Mt _.t which the oscillating shaft assembly would

sense as a reaction to the vibrations. We find

4 oo
M Mse% _4sin_t 4F M__ X" n3sinn_(t-tl) (8.21)

-/_ f z_, 2 2 2
Ft= t MT (0)2_f_2)(O)t2_f_2) MT n=l,3 .... (0)2-n20 )(0)t-nl'2)

Here, in addition to the apparent resonances at f_ = 0)o/3, coo/S, etc., we notice

the real resonances at f_ = cot/3, Rot/5, etc. (plus .(2= COo,f_ = Rot). These are not ruled

out by the non-stopping restriction in our operating range. Since, for our conditions,

= 9300 rpm, we should have resonances at 9300/9 = 1033 rpm, 9300/7 = 1329 rpm,

9300/5 = 1860 rpm (plus others at COo,rot/3, etc., which are outside our range). These

are, as Eq. (8.21) shows, directly attributable to the "jerkiness" in the dry friction force.

It is interesting to see the behavior midway between resonances, say when f_ is

cot/n+l

(n = 3,5,7,...). For n >> 1, if only the two neighboring resonances are retained as being

dominant, we can show that the force varies as

4 Mt Ff cosf_(t - t 1)sin o_t(t - t 1) (8.22)
Fel(t) = x MT

Here, we see a high frequency oscillation, at (n+l)f_ (halfway between the nf_

and (n+2)f_ resonances), modulated in amplitude at the basic frequency fL This is the

behavior seen in Fig. 8.6. We noticed that in that case oh = 9300 rpm, and so oh/5 =

1860 rpm, oh/7 = 1330 rpm, with the mean value being 1595 rpm, not far from the

shaking frequency of 1550 rpm. The figure shows clearly the cot/6 oscillation with

once-per-cycle modulation. Using Mt = 7.2 Kg, MT = 150 Kg, and Ff = 266 N, the peak
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value of Eq. (8.22) is 16.3 N ___-3.7 Ibf. This is only about 1/4 of the value seen in Fig.

8.6. This indicates that the mode which is being excited is one in which the linear

motion of the turbine itself is about 4 times that of the center of mass of the vibrating

structure. This is quite plausible because, as was shown in our approximate modal

analysis in Ref. [4], the first transverse mode involves a combination of rod deflections

and dynamometer deflections, with the rods being the most flexible element. Thus,

when the center of mass of the shaft assembly is pushed back and forth by the shaker,

and vibrations are excited due to the dry friction, the pivot point for these vibrations is

likely to be much closer to the center of mass of the structure than it is to the turbine.

Clearly, however, a more detailed modal analysis is needed to firm up this conclusion.

The vibration amplitude (or the vibratory force amplitude) at one of the

resonances (_/5 or _/7, for instance) should be limited only by unmodeled viscous

damping, and can be shown to be (F_Es. = 2-_--Mt F---fwhere N = 3,5,7 .... and _ is the
Nx M T

ordinary viscous damping factor. The physical origin of this damping should include

any Cxx factor due to dynamic Alford force effects, and we could in principle try to

exploit this fact to extract such forces. However, operating at resonance might damage

the rig and, in addition, at these higher frequencies, the aerodynamic phenomena

responsible for introducing damping would probably be different from those of interest

at fractions of the turbine speed.

8.7 Alternative Methods for Dynamic Force Measurements

In view of the severe difficulties encountered in our attempts to extract dynamic

Alford forces from linear shaking tests, we have considered several possibilities for

future work in this important area. These are listed here, with some preliminary

discussion of each. Further details will then be discussed for the more attractive

options:

(a) To measure 0x accurately with present apparatus. As noted, this is
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possible, but difficult. Extensive testing and improved data reduction methods

would be necessary to characterize and filter out the various sources of noise.

(b) To modify the apparatus for reduced friction. This would substantially

improve the measurement accuracy. Unfortunately, the linear bearings were

originally packed very tightly for precision. The supporting rods were cold-

rammed through the linear bearings and into the casing of the turbine bearing

assembly. Any attempt at repacking would entail cutting these rods, and very

extensive reconstruction work.

(c) To extract damping data from ringing amplitudes. This would require

near-resonant operation and, as discussed, might yield misleading information in

any case.

(d) To replace linear shaking by circular whirling. This cannot be done in

general without complete re-design of the turbine support. However, if attention is

restricted to the special case _ = (o (whirling at spin speed), all that is required is to

mount the turbine eccentrically on the centered shaft. The overriding advantage of

this procedure is that the force of interest is now on the Y axis, and is in principle a

constant. This decouples it from the centrifugal (inertial) force along OX. More will

be said below about this option.

(e) To use wall-mounted transducers to measure real-time pressures

during shaking. This is fairly simple to implement, but will only yield the part of

the dynamic cross-forces due to pressure non-uniformity (about 40% for

unshrouded turbines, 75% for the shrouded case).

(f) To replace the traversing directional probes by traversing hot wires.

These can, in principle, measure flow angles in real time and, following an

extension of the procedure of Sec. 4.3.5, yield the blade part of the dynamic cross-

forces. This should be done in conjunction with option (e) above, to obtain a

complete picture of the real-time fluid forces.
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Procedures (e) and (f) are indirect, but since we have shown good correlation

between directly measured and fluid-derived forces for the static case, there is a good

basis for extracting at least trends versus frequency in this manner.

Of these, option (d) (eccentrically mounted turbine) is the simplest procedure,

and deserves some more scrutiny. It would yield the desired component of force

(perpendicular to displacement) only at one whirl frequency, _ = co, but this one whirl

speed is conveniently located above the expected range (_ ~ @ co), so that dynamic

effects which may be only modest at (o/2 will now be amplified and easier to measure.

The essential points in favor of the eccentrically mounted turbine method are

two:

(a) No linear shaking is involved. From our discussion and partial data, it is

clear that the difficulties associated with linear bearing friction are to be avoided if

at all possible. In the method under consideration, the shaft bearings would be

statically set at their centered position, and locked there. The whirling turbine

motion is created by mounting the turbine eccentrically on the shaft. This gives

true circular whirl, not shaking along an axis.

(b) The force to be measured is now Fy, which appears in the

dynamometer axis perpendicular to the offset. The existence of damping

would manifest itself as a change in the magnitude of this Fy when compared to a

static measurement. This is very different from the linear shaking case, where we

need to extract the phase of Fx (where the main inertia forces occur) in order to

measure damping of the Fy forces.

Because of the absence of linear shaking, we don't expect a high level of noise

in the form of high frequency ringing or other dry friction effects. The inertia of the

turbine, which dominates the Fx component, is now (a) not along the axis of interest,

and (b) steady. Thus, the relevant data, those sensed by the gauges for the Y axis,

should be fairly clean.

/•
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An additional reason to expect clean signals in the dynamometer Y axis is that,

with the turbine shaft statically fixed at its centered position, the disturbances due to

the slight misalignment of the intermediate shaft segment do not arise. These

disturbances have been there even in our static offset testing, and have been dealt

with (as explained in Sec. 2.3.1) through careful phase-locked filtering. However, we

think they are the cause of the residual +5% or so error in our static force data.

The inertia Mt o 2 ex (where ex is the offset) of the turbine will produce some

centrifugal deflection. The lowest estimate for the stiffness here comes from the

observed ringing frequency of _ = 9300 rpm and the mass Mt (in reality some

additional mass must be involved). This gives K = Mt (o_ and the deflection 8 can then

be found from

Mturb.O2ex _=_Mturb.O)28

8- (I) 2 /3440t2e
-(_nn) ex= = O.14ex_9300! x

This being an upper-bound estimate, it shows that centrifugal deflection is not a real

problem, although one would need to monitor the actual tip gap in operation using the

proximeters.

In terms of data acquisition, since the output is now a DC signal,

synchronization ceases to be a driving concern (which it very much is for linear

shaking, or even static offsets). All that is required is control of sensor drift and some

form of zero suppression to boost the sensitivity. These do not appear to be serious

problems.

The quality of the data can be improved by repeating the whirling test at various

turbine speeds, in each case keeping the ratio (mass flow/speed) constant. This

ensures both equal operating point parameters, such as flow coefficient and pressure

ratio, and also equal reduced whirl frequencies (_H/Cx). The forces themselves

should scale with flow rate, but the Alford coefficient should remain the same. It is to
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be observed in this connection that this set of different speed tests does not serve to

span the whirl frequency gap between zero and running speed, because it still

corresponds in each case to the latter.

Turning now to the possible experimental program, the approach's validity can

be verified fairly easily if attention is first focused on the shrouded turbine. All that is

required is a new set of mounting holes for the turbine as it mates with the

dynamometer, and a slight re-machining of the lip on the mounting surface, to allow for

a 10-15 mil offset. The forces under static deflection have already been measured,

and could be repeated for verification by still using the current mounting holes. The

next step would be to change to the new (eccentric) mounting position, center the

shaft, and attempt to measure the (DC) Fy component, as discussed. As verification

that whatever difference may be found between the two measurements originates from

the dynamic effects, we can monitor the seal cavity pressure distributions using one or

more Kulites (as we have already done for other purposes). Since we have verified

that most of the cross-force in the shrouded turbine arises in fact from the seal

pressure distribution, we should be able to detect almost the same variance between

static and dynamic pressure nonuniformities as between static and dynamic

dynamometer data.

After verification of the method as described, additional work (including an

unshrouded turbine) could proceed along two optional paths:

(a) To limit measurements to the eccentric turbine (_ = co) case, including supporting

Kulite data on wall pressure distributions in real time. This would provide

complete data on a single, but important, whirl frequency and answer the

fundamental question of whether dynamic effects are or are not important in

unshrouded turbines.

(b) To include fluid surveys with hot wire anemometers placed at the downstream

locations where the 3- and 5-hole probes were for the static tests. This can be
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done over the whole range of linear shaking frequencies and, as we did in the

static case, the flow angles measured can be used to calculate the Alford forces,

this time at various O. frequencies. We showed (Sec. 8.2) that, with linear shaking,

the Alford damping must be obtained from Fx data, most likely from their phase

angle. This was very difficult using the dynamometer, because of the intrusion of

the large Fx component from turbine inertia. On the other hand, if the Fx

measurement is from flow angles, there is no such problem and the phase to be

measured is of the order of tan -1 (_.Cxx/Kxx), which is large if Cxx is significant.

Also, obviously, the ringing and irregularities introduced by linear bearing friction

have no effect on these data.

8.8 Recapitulation

Due to the much higher level of difficulty involved, this was the least successful

segment of our work, and the original goals of measuring the dynamic, as well as the

static, Alford forces was not met. A good start was made, however:

• The test facility was modified to produce dynamic linear offsets in the frequency

range of 0.3 to 0.5 of nominal spin rate.

• Data acquisition procedures were developed to continuously monitor all forces and

displacements.

• Data reduction procedures were developed to filter out low frequency noise by

phase-locked averaging.

° A first order interpretation of data obtained at various facility pressures and at

various shaking frequencies was made. In particular, the nature and origin of the

observed high frequency noise was clarified as deriving from the dry friction

present in the linear bearings.

Several alternative avenues were preliminarily investigated to obtain the

Of these, the method based onimportant information on dynamic Alford forces.
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eccentric placing of the turbine on a concentric shaft was found most attractive. Other

feasible options involved real-time acquisition of fluid data and extraction for forces

from them.
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9.0 Theoretical Investigation

9.1 Qverview

Despite the fact that the emphasis of this program was clearly on the acquisition of

experimental data, it was recognized from the beginning that these data could never cover more

than a small fraction of the practical turbine configurations, and that a rational basis was needed to

extend the results to potential future designs. This was the motivation for our theoretical work.

The general area of turbine blade tip gap flows and their effects constitutes a large subset of

turbine aerodynamics, and has been approached theoretically in a variety of ways. In particular, if

the aim is the clarification of the very complex flow patterns in the tip region, the rapid advances

made recently in computational fluid mechanics, including 3-D viscous flows, make this the most

promising avenue of research. However, our particular interest is in the perturbations introduced

by the non-symmetric placement of an offset turbine. These effects are relatively small in the

context of the strong localized flow features associated with tip leakage (leakage jets, leakage

vortices, local separation, etc.), and a straightforward 3-D turbine calculation attempting to capture

them all would need to cover the whole stage, plus commensurate distances upstream and

downstream, and would also need to be quite detailed and precise. While this may be a desirable

topic for future work, a simpler and more focused approach was sought for our purposes.

A possible ordering principle that can be used to sort out the various phenomena associated

with the Alford force problem is the disparity of the scales involved. The most detailed level

involves the scale of the gap itself. This includes the discharge jet, the development of thin

boundary layers on the hub and blade tip, the local separation bubble at the gap inlet, on the sharp

corner of the blade tip, etc. At the next lower level of detail are a variety of blade-scale effects due

to the tip gap: radial migration of approaching flow towards the gap, formation of a vortical rolled-

up structure on the downstream side, flow under-turning over the outer 20-30% of the blade span,

etc. Finally, on an even broader and less detailed scale, namely, the scale of the turbine radius, we

can discern most clearly the specific effects of the turbine offset: azimuthal variations of efficiency

and work per blade, azimuthal pressure non-uniformity, and azimuthal redistribution of flow.
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These three scales, 8, H, and R, are typically in ratios of the order 8/1-1N 0.01, H/R - 0.1-

0.3, and the smallness of these ratios can be exploited analytically to simplify the formulation. In

essence, the gap-scale flows are set up by conditions of pressure, etc., which occur very near the

tip itself, when measured on the scale of H. Thus, they can be understood separately with minimal

reference to blade-scale effects (and even less to radius scale effects) except insofar as these

broader scales set up the boundary conditions for the gap flow. Similarly, the radial redistribution

and other blade-scale effects are driven by "local" values of quantities which are variable in the

azimuthal direction, and can be analyzed as if there were no such variation. They are, at the same

time, influenced by the details of the near-tip (gap scale) phenomena, referred to above. Finally,

the azimuthal variations "see" the effects on the smaller scales mainly as connecting conditions

between upstream and downstream flows, with an inherent asymmetry introduced by the turbine

offset.

These distinctions acquire an even sharper meaning when we examine time-dependent

offsets due to vibration or whirling of the turbine shaft: the unsteady effects are then entirely

associated with the largest scale, R. This is because the reduced frequency fLR/c x can be of order

unity (f_, the whirl speed, is not far from o_, the spin rate, and o_R/c x = 1/_ ~ 1-3, where _ is the

flow coefficient). On the other hand, the reduced frequencies f2H/c x, f28/Cx formed with the other

scales are smaller by H/R and 8/R, respectively, which makes the flow quasi-static on these scales

- it can be described as if it were steady flow, only using the instantaneous values of the gap,

pressure ratio, etc.

We have explicitly made use of these multiple-scale considerations in setting up a hierarchy

of interconnected analytical models. These will be briefly described here, and a detailed account of

each will follow (in some cases, by reference to earlier work).

1) On the gap scale, three different, progressively more refined models have been developed:

a) Zero work done by the leakage flow. This is incorporated into the simpler form of the

blade-scale model below (2a).

b) Partial tip work, derived by examination of the vortex roll-up dynamics. This enters the

/
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more refined version (2b) of the blade-scale model.

c) Viscous effects on gap flow. These can be important for very small tip gaps and thick

turbine blades, particularly due to wall motion against the pressure gradient. This work

has yet to be connected explicitly to the other models.

2) On the blade scale, the effects of a constant tip gap have been analyzed by:

a) A meridional plane actuator disc model with a gap through which escapes non-working

fluid.

b) A variation of (2a) in which the model (lb) is incorporated to allow for the partial turning

of the gap flow.

These two models allow predictions of the loss of work due to the gap, the efficiency loss, the

size and flow velocity vector in the gap flow, etc. These can then be used in the radius-scale

model (3b) (below).

3) On the radius scale, two distinct models were developed, one early in the program, one

much later:

a) A very simple radial plane (constant radius) 2-D actuator disc model, with radially

averaged properties. The disc connecting conditions reflected the variability of the gap

through an empirical coefficient, 13= 0rl/O(e/H). Perfect trailing edge guidance was

assumed on both, stator and turbine.

b) A refined radial plane actuator disc model which uses as the connecting conditions the

results of the blade scale models above, thus incorporating consistently the smaller scale

effects, with no recourse to empiricism.

Both these radial scale models account for unsteady gap variations.

As noted, the work on the viscous effects has not reached the point where it can be

incorporated into the more global analysis. For this reason, it will be discussed separately at the

end of the theory section. The simplified radial plane 2-D model (3a) was fully discussed in Ref.

[3], and will not be repeated here, as it has been superseded by the more complete model (3b). We

will next give a detailed account of models (2a) and (2b), which include (la) and (lb) respectively.
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This will lead to the large scale synthesis of model (3a).

The account that follows is largely taken from our previous writing in Ref. [3].

9.2 p|ade-Scale Effects of Tin Leakage

9.2.1

The effects of the finite gap at the tip of the blades of various kinds of turbomachinery has

long been a topic of study, both theoretical and experimental, motivated largely by its strong

impact on stage performance. An additional motivation arises, in our case, from the role of blade-

tip losses in the generation of de-stabillzing cross forces on turbine disks. The mechanism for

these forces, as first proposed by Alford [1] and Thomas [2], is depicted in Fig. 9.1. It is an

empirical observation that the efficiency of a turbine decreases more or less linearly with the ratio

of tip gap to blade height:

n =no- _ (9.1)

where 13is a numerical factor of order 1-2. Alford assumed that the same fractional reduction

would also affect the force f per unit tangential length:

f _ fo [38
flDEAL fIDEAL H (9.2)

It will be clear in what follows that the fractional loss of force f (or work) is in general

different from that of efficiency, and may actually have variation trends which are opposite. For

now, we follow Alford's argument. If a turbine disk with mean gap 8 is offset by ex in the

transverse Ox direction, then, measuring azimuth 0 from the point where the gap is maximum,

8 (0) = 8 + ex cos 0 (9.3)

We can now project all forces in the OY direction, (perpendicular to the offset), to obtain fy = f cos0

per unit length, for a total cross-force

Fy = f? fy R d0 .
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Using Eqs. (9.2) and (9.3),

Fy = _ _ fIDEAL_R

or, noting that the ideal torque is QIDEAL = 2_R2 fIDEAL,

Fy= _ (QIR------_} (_) (9.4)

This force is only opposed by inertia and damping forces, since the structural restoring

reactions to ex would normally act along OX. The result, if damping is insufficient, is a divergent

whirling motion. Equation (9.4) shows the importance of the loss factor [3 (Eq. (9.1)) (or, more

correctly, the work loss factor, to be introduced later) for prediction of the stability properties of a

rotor.

The extensive data base on tip-loss factors has been correlated by many authors on the

basis of various levels of analysis. A good review of these efforts was presented by Waterman

[18], from whose paper we have borrowed Fig. 9.2. Waterman selected 10 well documented

turbine test cases and five tip-loss prediction schemes, and obtained results which are statistically

summarized in Table 9.1, also taken from Ref. [18]. (Results based on Lakshminarayana's

method were omitted because of their systematic overpredictions). Given that [3 averages roughly

1.5, the variances in the first column of Table 9.1 indicate a fairly unsatisfactory state of affairs

regarding predictive capabilities. Perhaps at the root of this situation is the lack of a clear model of

how the losses arise. Generally speaking, the various approaches used have fallen into three

categories:

(a) Models based on calculation of the pressure-driven tip gap flow rate, plus the assumption that

some portion of the kinetic energy of the flow is lost. Various corrections are used for

viscous and other effects. The models of Rains [11] and Vavra [19] are in this category.

(b) Models based on adaptations of wing theory to predict the "induced drag" produced by the

trailing vorticity escaping at each blade tip. A key difficulty is the prediction of tip lift

retention, which determines the strength of such vortices. Examples are Lakshminarayana

\.
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TABLE 9.1

MEAN SQUARED ERROR AND MEAN ERROR MAGNITUDE

FOR VARIOUS TIP LOSS CORRELATIONS (FROM REF. 18)

Aq

Kofskey

Ainley

Soderberg

Roelke

0.227

1.186

0.638

0.192

)2Ax/hExp
_Ly.(an iN /_h PRED---

-0.093

-0.074

0.500

0.235

A l:/h EXP
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[20], [21] and Lewis and Yeung [22].

(c) More recently, detailed two- and three-dimensional numerical computations of flow in a

passage, including gap effects, have become possible [23], [24]. While these give important

insight as to many details of the flow pattern, they still lack the precision required to calculate

the small deficits which add up to the losses. This is not unlike the situation regarding a much

better explored problem, i.e., drag predictions on a 2-D airfoil.

The models in Group (a) above are basically correct as to gap flow predictions, and can be

regarded as a satisfactory first order description of near-gap effects, at least for thin blades, where

viscous effects can often be neglected. On the other hand, they ignore the concomitant small

changes to the flow over the rest of the blade when a small gap is present. We will show later that

it is these changes that are responsible for most of the blade force losses.

The models of Group (b), with their emphasis on induced drag, come closer to capturing

the essence of the phenomenon. Indeed, the flow disturbances at the blades induced by trailing

vortices can be one way of describing the blade-scale effects of tip leakage. What has been

lacking is a globally consistent model of the strength and distribution of these vortices. Thus,

Lakshminarayana [20] used an array of straight-line trailing vortices of uniform strength, equal to

an empirically determined fraction of the blade lift. Ad-hoc corrections for vortex roll-up [21]

improve the details of blade pressure distributions with little positive impact on loss prediction.

In this work, we emphasize the global nature of the blade-tip problem by using an actuator

disk model for the stage. Details of the near-blade flow are in this way simplified by being

relegated to the role of algebraic connecting conditions between the upstream and downstream

flows. On the other hand, the spanwise rearrangement of the flow pattern due to preferential

migration towards the gap region can be correctly captured, provided one recognizes the

discontinuous nature of the downstream velocity distribution (i.e., the presence of a shear layer

along the tip streamsurface). This shear layer is, of course, the result of azimuthally smearing the

individual "trailing vertices" of the blades. With some reasonable mathematical approximations,

results can be obtained from this model which agree with data to an equal or greater extent than
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existing correlations. Perhaps more importantly, these results are easily enough related to the basic

nature of the problem that generalization is possible to include effects such as non-uniform gap

distributions (our principal goal) or non-uniform inlet flow. Improvements can also be introduced

on the details of the flow on the gap scale to account for partial tip loading, as will be discussed.

9.2.2. Formulation

For maximum simplicity, our initial model will make the following assumptions, some of

which will be later relaxed:

(a) Incompressible, inviscid flow

(b) Two-dimensional geometry

(c) Uniformity along the tangential (y) direction

(d) Fluid passing through the rotor blade-tip gap does no work.

(e) Stage collapsed in the axial direction to a single plane, and smeared in the azimuthal direction.

The "actuator disk" which represents the stage consists of a full-span stator and a partial-

span rotor (Fig. 9.3), both occupying the x = 0 plane. Since there are no variations with y, the

azimuthal momentum equation reads

0Cy 0Cy
 x-ffx+c,-ffz--0

or, introducing the vector _.k = _Cx + kcz to represent the meridional velocity projection,

 ±.Vcy=O

showing that Cy is simply convected by __l_-

where

(9.5a)

(9.5b)

Similarly, the vorticity equation reduces in this case to

(9.6)

OCx /)Cz

COy= Oz Ox (9.7)

and the Bernoulli equation reduces to

_±. VB_k = 0 (9.8)

where
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1 2
B;= _ + 2 c; (9.9)

Continuity is satisfied by introducing the stream function W(x,z) for the meridional flow:

_W _W

Cx=--_- ; Cz= Ox (9.10a,b)

and then Eqs. (9.5b), (9.6) and (9.8) reduce to

Cy =cy (W) (9.1 l)

my = coy (W) (9.12)

B s = B x (W) (9.13)

Using in Eq. (9.12), the definitions in Eqs. (9.7) and (9.10) produce the equation which

governs W(x,z):

vaw= my(Y) (9.14)

where, in this case,

v: =vi=
3X 2 3Z 2"

Notice that the meridional flow (c x,c z) is decoupled from Cy, and can be solved for first.

The component Cy, as well as

aCy 3Cy
mz=-b-7,

can be found a posteriori.

Upstream of the stage (x < 0), we assume the flow is irrotational (COy= 0), and W simply

obeys Laplace's equation. Uneven work extraction as the flow goes through the stage gives rise to

non-zero vorticity my downstream of the disk, and the value of COyis carried unchanged on each

streamline from here on.

The vorticity COyand the meridional Bernoulli constant, B, are related to each other in a

simple way. Starting from the Lamb form of the meridional momentum equation,
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and taking the cross-product with 3±,

and

=. 13± x VB±

Remembering that, B_k = B_I_(LP), we have

(9.15)

(3_1. x VB±)y =(dB I (__l_X VxtJ)y

_d_F/

From the definition of qJ (Eq. (9.10)), (_± x V_F)y = - c2±, so that

dB±

COY= dW (9.16)

This relationship opens the way for a connection between the downstream coy and the non-

uniformity of extracted work at the disk. Let subscripts 1 and 3 denote stations just upstream and

just downstream of the stage (Fig. 3). Then, because of continuity,

Cx3 = cxl (9.17)

and, since we assume spanwise uniform blading, which can exert no forces on the flow in the z-

direction,

CZ3 = CZ1 (9.18)

Because of Eqs. (9.17), (9.18) and the definition (9.9),

B± 1- B± 3_P1-P3
P (9.19)

Now, upstream of the stage, the absence of vorticity implies (dB-l-1/d W) = 0 and so, from (9.16),

dBl3_ d(B-l-l"Bl3) _ d (___)
toy- d_ d_ dq"- . (9.20)

which gives the vorticity COywhen the distribution of (isentropic) static enthalpy extraction

(P1-P3)/9 is known.
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The geometry of the stage blading is shown in Fig. 9.4. Euler's equation gives for the

stagnation enthalpy decrease across the stage

-Aht --'O[cxtan_2- (U-cx tan _3)] (9.21)

where U is the wheel speed. Adding to this the kinetic energy increase

A (K.E.) = lc_3=2J--(U-cx tan 133)2 (9.22)

we obtain, for any streamline which crosses the disk in the region covered by the blades (not the

gap)

(P1-P3_ 1 (U2 _ Cx2tan 2----if--/BL = U Cx tan o_2- 133) (9.23)

Exactly how much work is extracted from those streamlines which at some point cross the

blade-tip gap is a relatively complicated question to answer, and to which we will return in

Sections 9.2.8 and 9.2.9. For now, we will make the simplest possible approximation, namely,

that no wgrk is extracted. This implies for such streamlines

(_} -PI-P2 - 1 Cx2tan 2(z2a,_d' _ "_- (9.24)

In Eqs. (9.23) and (9.24), the axial velocity cx at the disk is to be regarded as a function of

z, in anticipation of redistribution of the flow in response to the presence of the gap. When using

Eq. (9.20), therefore, we will put

d IdV- _Cx__ _V/x=0_Cx-gzIx=0

and so the COyvorticity can be calculated from Eqs. (9.23,) and (9.24) as

oy: 1(Cx)x= 0 Oz x =0 (9.25a)

/_Cx/ (9.25b)
GAP: _ = - tan2 o_2[ 0z Ix ---0

Since there is a discontinuity in the connecting conditions for flow through the gap versus

flow through the blade passages, we can also expect a discontinuity, in the form of a shear layer,

i

/
!i£
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on the downstream portion of the streamline which passes through the blade tips. Denoting by

superscripts (+) and (-) the regions on the gap and blade side of this layer, respectively, its strength

(at least for the y-component) will be

+
Q = toy dr= B + - B_13

(9.26)

With the help of Eqs. (9.19), (9.23) and (9.24), and the fact that no discontinuity exists

in B±I we obtain

Q = u_ tan o_2-1(u2- c;<2tan2 [33)_1 Cx+2tan2 o_2 (9.27)

Recapitulating, the equation for q_ is

UPSTREAM: V 2 _IJ=0 (9.28a)

DOWNSTREAM:
GAP I

BLADES/

- tan2 if,2

- [(Cx)Ux=0 tan ct2 + tan2 _]

+ Q 8(V- qJTIP)
=0 (9.28b)

where _5(W - _FTIP) is Dirac's delta function.

The boundary conditions are:

(x,0)=0 ; W(x,H) =cxoH

_)_F z) = 0• (-_, z) = CxoZ ; (+**,
bx

V (0",z)= V(0+,z) • bY (0",z)=_ (0+,z),-_- (9.29)

9.2.3. Inverse Coordinates and Linearization

Given the convective nature of several key quantities, the stream function _F is a natural

independent variable for our problem. This will be particularly helpful for numerical solution,
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since the discontinuity at • = WTIP can then be explicitly retained with no numerical smearing.

We therefore change independent variables from (x,z) to (x,tP), and regard z as the new dependent

quantity; the function z(x,W), of course, represents the shape of the streamlines. Using subscripts

on z to denote differentiation, the velocity components are then

__1_ , Cz_-Zx
Cx = z_ z_

and also

=_ ZtI_a

_z x=0 z x=0

(9.30 a,b)

(9.31)

and the Laplacian operator becomes

V2_p = 1W- [- zZvzxx + 2 Zx z,I, Zx,e-(1 + Zx2) zw,t,]

(9.32)

The governing equation V2tl J = 03y (_P), which in its original form was nonlinear by virtue

of the dependence of %, on _P, is now non-linear only because of the derivative products on its

left-hand side. Whereas linearization in the original coordinates would imply regarding COyas a

small quantity, linearization in inverse coordinates can fully retain COy,and implies only neglecting

certain products of velocity disturbances on the LHS of the equation. Thus, although the results

will be later verified by numerical solution of the full non-linear equation, we begin our

investigation by linearizing z(x,_) about the uniform flow condition:

z= Ia
Cxo (9.33)

where Cx0is the velocity far upstream of the disk, and _ << z.

For the velocity components this implies, to first order,

Cx----Cxo-CxZoz-v

c_ =Cxo_x

The governing equation (Eq. (9.28)) reduces, to first order, to:

UPSTREAM: + _xx + _v_' = 0
Cxo (9.35)

(9.34a,b)

/
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DOWNSTREAM{OAP}BLADES

l_xx + _'_' = - t
tan 2o_2

and the boundary conditions are now

(9.36)

(x,0) = _ (x, Cx, H) = 0 (9.37a)

(- 00,'_')= _x (+ **,q') = o (9.37b)

(o-, (9.37c)

Zx (0-, W)= Z'x(0+,_ ) (9.37d)

The shear layer strength Q in Eq. (9.36) remains as defined by Eq. (9.27), where Cx+ and ci

are to be found as pan of the solution.

9.2.4. The Nature of the Throu_,hflow Distribution at the Disk

Although there is some interest in the flow distributions elsewhere, the main results to the

obtained depend on how the flow is distributed at the disk itself. We will show in this section that,

in the present linearized approximation, the distribution consists of two constant, but different axial

velocity levels; one for flow crossing the gap, and one for flow through the bladed region.

One part of the proof relies on a general property of linearized actuator disk flow; the

disturbance at the disk is half as strong as it is far downstream. This property is best known from

elementary propeller theory, where it holds (with no need for linearization) by virtue of the

constancy of the background pressure. For linearized, confined flows, it is proven, for example, in

Horlock's monograph [25].

Since Horlock's analysis is in direct coordinates, the statement must be qualified by saying

that the disturbance doubles between disk and downstream stations at the same z coordinate. In

our analysis i.e., with (x,W) as coordinates, the disturbances double along a given streamline. A
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proof is givenin Appendix9A. The"disturbance"canbeeitherz(W), thedisplacementof a

streamline,or theshear,bCx/bZ.Usingthelatter form, then,

az/x_-o (9.38)

On the other hand, the shear (_Cx/gZ)x=** far downstream equals the corresponding

vorticity (o)y)x =.,, which is given, for example, by the right-hand side of Eq. (9.36), times - C3xo.

Excluding the concentrated vorticity Q at qJ = WTIP, and using Eq. (9.31), this takes the form

( oxlaz ]x=** x=0

F(W)=-t tan2cc2 / ({ BLADESGAP })

t U tan °_2 + tan2 133 J

(9.39)

where

(9.40)

Comparing Eqs. (9.38) and (9.39), we can see that, both shears, (_Cx/_Z)x_--0 and (_Cx/_Z)x=o. must

be zero, unless F(W) = 2. This latter condition is ruled out by Eq. (9.40), which shows F(_P) < 0.

Once again, this excludes the vorticity concentration at _P = qJYIP.

We can therefore conclude that the axial velocity distribution at the disk must have the

piecewise constant form shown schematically in Fig. 9.5. Since the work done by the flow is

uniquely related to the disk throughflow (Cx)x_-0 (see Eqs. (9.23), (9.24)), the implication is that the

turbine work defect due to the presence of the gap will be distributed uniformly along the blade

s_p____,in correspondence with the uniform decrease of (Cx)x=0 • This is at first sight counter-

intuitive, given the strong localized effects produced by the gap flow (leakage jets, rolled-up

structures, etc). Indeed, the non-linear solutions reported later (Sec 9.2.7.) show some amount of

extra work defect near the tip, but the main component by far still remains distributed. This effect

may be thought of as the result of the transverse pressure forces set up in the confined flow by the

presence of the gap. These forces ensure that the extra flow going to from the gap jet is evenly

supplied by the whole passage, and it is this small flow defect that is responsible for the work
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defect. On the other hand, it remains true that strong total pressure losses must be associated with

the dissipation of the sharp discontinuities created near the tip, and this must be taken into account

as well when calculating the effect of the tip gap on turbine efficiency (See Sec. 9.2.5.2).

9.2.5 Splution of the Linearized Equations

9.2.5.1 Disk Ouantities

Since c x (x=0) is piecewise constant, the distributed part of the forcing term in Eq. (9.36)

disappears, leaving only the shear layer:

1___xx + _vv = - Q 8 t_- _P) (x > 0)
c_0 c_ 0 (9.41)

The values of the two disk velocity levels (Figs. 9.5) can be obtained as follows. First,

since (%)** =- Cx3o(_,e)._ (the x-derivatives vanish), then, integrating across the shear layer at

x = oo, and using the definition of Q (Eq. 9.26),

r.)x=_
clo (9.42)

where the superscripts (+) and (-) refer to the jet and blades side of the layer, respectively. At the

disk, the difference of the "_q, values must then be 1/2as much:

=-&
2C3xo (9.43)

Also, integrating z,t, from W=0 to W = Hcx0, and using the boundary conditions in Eq.

(9.37a),

7_ (_)x = fl + (1- _.) (_)x = 0 = 0 (9.44)

where _, is the fractional flow through the gap (namely, _IJT = (1-_.) Hcx0) The quantity %,is

regarded as a given in our formulation, while the geometrical gap width, 8, is not.

Solving Eqs. (9.43) and (9.44) together,

(z--_)x=° =_ 1 -____Q
2c3 (9.45a)

(
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which translates into the axial velocities (see. Eq. 9.34)

1 + (1 - X) (GAP)

C_A.x_ 2C_

c_- 1- Q (BLADES)

2 c_X

(9.45b)

(9.46a,b)

Since this gives us the velocities c_ and ci at the disk, we can now substitute (9.46a,b) into

the definition (Eq. (9.27)) of Q, which yields a quadratic equation for Q as a function of X.

After some rearrangement, this is

(1-X)2 tan2ft2" X2tan2_34 q2 +[2 +(1-_,)tan20_2 +_---q_tano_2 + X tan2133] q

=0
(9.47)

where _ is the flow coefficient

¢_ Cxo
O (9.48)

and the dimensionless shear layer strength is

Q

q Cx2o (9.49)

The implied gap width, 5, can be easily calculated. Integrating Eq. (9.45b) from ud = 0 to

_F = _FTIP = (l-k) Hcx0

7-q-w _ X (l-X) qH (9.50)

Adding to this the undisturbed value (1 - X)H, we obtain ZTiP, and then _ = H - ZTIP. The

result is

_5=X[1-(1-x)q]H (9.51)

This can also be solved for the leakage if the gap is given:
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2 (8/I-I)

(9.52)

Notice that _, depends non-linearly on (8/H), both explicitly, and through the dependence of

q on 9_ (Eq. (9.47)). For the practical, small values of k and (8/H) this is not a strong non-

linearity, however.

(

9.2.5.2 Work Defect and Efficiency Losses

The power extracted by the turbine, and hence the tip loss coefficient, can also be calculated

easily. In coefficient form,

lg -= 1 [ (htl_ ht3) pdU_
rhU2 Jo (9.53)

The total enthalpy drop is given by Eq. (9.21) for the bladed area (using Cx = ci), and is zero for

the gap.

Remembering that p W___._EP_- 1 - 7%we obtain
m

lit= O- _.)Ida(tan or2 + tan _3)- 1 - _._q (tan 0_2 + tan 133)]

For zero leakage, go = q_(tan c_2 + tan 133) - 1. The relative work defect is then

_°-_-_[ i_°+11_o _/o 2% q] (9.54)

We can now calculate a work defect coefficient w as the relative work decrease (Eq. 9.54)

divided by the relative gap width, 8/H. Using Eq. (9.51),

W _

l÷Vo+l 12h- qVo

(9.55)

This coefficient is not to be confused with the efficiency-loss coefficient [3 introduced

earlier (Eqs. (9.1) to (9.4)). If we agree to work with the total-to-total efficiency rl, its evaluation

requires in addition the calculation of the total pressure (Pt)MIX at a hypothetical downstream
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section where the shear layer has dissipated and conditions are again uniform.

At this "mixed-out" downstream station, the axial velocity must again be Cxo(to conserve

mass) and the tangential velocity (from y- momentum balance) must be

cyM_x = _, c_ + (1 - k) c_, (9.56)

where c_ and _ are the tangential velocities in the fluid above and below the shear layer,

respectively. Prior to mixing, both c_ and _ are uniform in their respective domains, because they

are uniform at the disk (in our two-level approximation), and are then purely convected from there.

From Fig. 9.4 we have

c_ = Cx+ tan o_2 (9.57)

c_ = U - Cx tan 133 (9.58)

where Eq. (9.57) reflects the assumption of zero turning of the gap flow, and (9.58) assumes

perfect guidance by the rotor blades for the rest of the flow.

The total pressure in the mixed-out region is given by

Pto- PtMrx _- Po - P.. _ _1c_M_
p p 2 (9.59)

where P.. is at a far downstream position, (before or after mixing in the linearized approxi-

mation), and we have taken advantage of (Cx)**= Cx0 , (Cz_ = 0. The static pressure drop can be

calculated for a streamline which goes through the blades. The drop PI - P3 at the disk is given in

Eq. (9.23). Upstream of the disk,

-P1 _ 1 (ckX)x 1 c2
Po 2 (9.60)--O - 2" Xo

and downstream, since c_ remains invariant,

P**-P3 l(cgt2+Cz2)x=o 1 2= - -
p 2 (9.61)

Here c_ (x = 0) is a 2nd order quantity in our linear analysis, and will be ignored.

Substracting (9.60) and (9.61),

265



P P (9.62)

Combination of Eqs. (9.58), (9.61) and (9.23) therefore gives the total pressure from far

upstream to the hypothetical downstream mixed-out station. This quantity is the ideal work

extracted per unit volume, and the efficiency is then

where _t is as given by Eq. (9.54). The efficiency loss factor follows as

(9.63)

1-T_

_5/H (9.64)

As noted, the efficiency _ is affected by the decrease of _ due to the gap, also by that of the total

pressure drop. With no gap, and everything else being ideal, we would have r1 = 1. Let the total

pressure drop be therefore expressed as

Pro- PtMIX = Xl/-o(1 -- _ _. )
pU 2

where _ (which is a positive quantity) can be calculated following the outline explained above.

Then it is easy to show that the loss factor 13and the work defect factor w are related through

(9.65)

L
1 - H (9.66)

so that 13is in general smaller than w. Calculated results will be shown in Section 9.2.6.

9.2.5.3 Velocity Distribution Away from Disk

The solution to Eq. (9.41) is most easily written in terms of Fourier series in _F, which can

also represent the discontinuities occurring along the shear layer. This is the form naturally

obtained by formal separation of variables. Imposing all the boundary conditions listed by Eq.

(9.29), we obtain
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H

a n enn'x/H sin nx0
n=l

Z
n--1

a n (2 - e -ralx/n) sin nnO

(x < O)

(x>0)
(9.67)

where

(9.68)

and the % coefficients are yet to be found. The _P- derivative at the disk is

oIO

('i_P) x:°:-K- Z n% cosn_0
Cxo n=l

This must be identified with the distribution of_a, given by Eqs. (9.45), i.e.

_-v for 0 < 0 < 1 - %, and _v for 1 - k < 0 < 1. Fourier inversion then yields

(9.69)

%_ Q (_l)n+l sin nnk

_2 C20 n 2 (9.70)

When these %'s are substituted back into Eq. (9.67), the resulting infinite series are in

general not summable in closed form. However, the derivatives of _, which are related to velocity

perturbations (Eq 9.34), can indeed be summed. Without stopping to discuss the details (see Ref.

[26]) the results take the following forms:

UPSTREAM:

Cx. 2_Cx2o/ ke-_-c_s_ (1:0- _. le-_x_- cos _ (-i LO + 7_ (9.70a)

Cz _ Q ln[- 1-2 e nx/H cos_(1-0+X)+e 2rcxa-I

Cxo 4_Cx2. [ 1 - 2 enxlH cos g (1 - 0 - _) + e2 nxm (9.70b)

DOWNSTREAM

2nCx2o 2_x_ [enx/H - cos _ (1-0-X)J

+ tan-t sin _ (1-0+90 ]/

e nx/I-I - cos _: (1-O+X).][ (9.71a)
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Cz_ Q_.._QIn[ 1-2e-nx/Hcosrc(1-0+_) +e-2nx/n ]c--_ - 4rCCx2. 1 - 2e -rcx_ cos _ (1-0-_.) + e -2 nx/n (9.71b)

TheCx discontinuity is apparent (Eq. (9.71a)). The expressions also show clearly that the

axial scale of the near-disk potential effects is H/_,which, while being probably many times the

gap width 8, is still likely to be small compared to the mean radius R of the stage. This fact can be

exploited in studying the effects of azimuthal variations of gap width.

Particularization of Eqs. (9.70a) and (9.71a), for x = o do yield the known two-level

velocity distribution (Eq. (9.46)). On the other hand, Eqs. (9.70b) or (9.71b) give the spanwise

flow velocity at the disk as

sin _ (1- 0 + _.)

2_ Cx2o sin _ (1- 0 - ;_) (9.72)

which exhibits a logarithmic singularity at the tip (0 = 1 - )_).

The shape of the streamline which supports the shear layer is of some interest. Putting

0 = 1-)_ in Eq. (9.71b) and relating Cz to zx by Eq. (9.34b) gives

_ (_TiP, x) = Q___Q__In [1 + 4 sin 2 n)_ ¢- w'zI-I ]4_Cx2o [ (1 - e-nx/n) 2 (9.73)

• X
This is not analytically integratable, but for small _, and provided _- >> % (which only

excludes the immediate vicinity of the gap), we can expand the logarithm in (9.73), and then

integrate with the condition

_- (9.74)

Including the unperturbed contribution (1-_.), this gives

1

H(WTIP' x)= 1-_ +QI _" (1-_')+( i_k_[1-(1- e-nx/n)21} (9.75)
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9.2.6 Some Results of the Linearized Model

9.2.6.1 parametric Trends

This subsection gives some simple calculated results from the formulae obtained so far, in

order to illustrate the trends and sensitivities involved. Further results and comparisons to data are

deferred to Secs. 9.2.6.2 and 9.2.9.2.

As might be expected, the degree of reaction R (see Appendix 9.B for definitions used) is

an important parameter controlling the effects of tip leakage. At very high R the turbine is lightly

loaded and the effect of the gap is small. This can be seen most easily in the zero exit swirl case,

when Eqs. (9.B4) and (9.B7) indicate _ = 2(l-R), so that y --->0 when R ---> 1. At the other, and

more realistic end (small R), the individual turbine blades are highly loaded, but there is little net

pressure drop across the rotor. Since there is then little incentive for approaching flow to migrate

spanwise towards the gap region, little blade unloading is expected. Thus, the shear strength Q and

the loss parameter 13are expected to show maximum values at some intermediate degree of

reaction, For the same reasons, the difference between the relative gap 8/H and relative leakage

rate, _., will also peak at that intermediate R.

These trends are shown in Figs. 9.6 and 9.7. Here the leakage _. was held at 0.04 and the

degree of reaction R was varied over the range 0-1, while the flow coefficient d_was given values

from 0.3 to 0.7. Zero exit swirl was assumed, and so different _ values imply different turbine

angles 133, while varying R amounts to varying the stator blade angle _x2. The expected peak in

loss factor is seen to occur for R = 0.8, which is higher than the practical range for turbines (0 - 0.6

or so). Hence, in practice, the expected trend would be for losses to increase with degree of

reaction. This trend is clearly exhibited in Waterman's data compilation [18], as indicated in Fig.

9.8 (taken from Ref. [18]). More detailed data analysis will be shown in Secs. 9.2.6.2 and

9.2.9.2. The minimum of _5/H at R = 0.8 shown in Fig. 9.7 conf'u'rns that redistribution effects are

indeed strongest then, since the smallest gaps is required to pass a given leakage.

So far parametric results ("rubber engine") have been discussed. For a given turbine
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/ (given _2,133) some trends are shown in Figs. 9.9 and 9.10. Figure 9.9 shows the two axial

velocity levels at the disk as the gap only is varied (as reflected in the leakage rate). While both

velocities vary only slightly with gap, it must be remembered that for the bladed region, it is the

Cx
difference 1 - _** that controls the losses, and this difference does have a substantial variation. On

the other hand, the "jet" velocity changes are not particularly significant, as one would expect, since

they mostly respond to the fLxed AP across the turbine. Of course the word "jet" must be used

with caution, since only the x-component of the velocity is shown.

In Fig. 9.10 all geometrical parameters, including gap size, are fixed and the flow

coefficient is varied. This allows non-zero exit swirl to occur (ranging from cy3/Cx 0 = 0.73 at

-- 0.27 to c_3/Cx 0 = -0.47 at _ = 0.4, with zero exit swirl at t_ = 1/3). As the flow varies, the

degree of reaction remains approximately fLxed (close to the design value of 0.5), but turbine

loading _0 increases with _, as shown in the lower scale. As the results show, the tip leakage

fraction remains at about 1.5 times the relative gap throughout. On the other hand, the loss factor

13increases strongly with flow, and weakly with decreasing gap. The work loss coefficient w

shows a trend with flow which is opposite to that of 13,although weaker. The variation with gap

remains slight.

9.2.6.2 Comoarison to Literature Turbine Data

We can now compare the calculated losses to those reported in the experimental literature.

We rely for this on the compilation of Ref. [18], which gives data for ten cases (nine different

turbines) over a wide range of parameters. Ref. [18] reports for each case the tip values of the

work coefficient _0 (two definitions), degree of reactor R, flow coefficient _, and individual blade

loading (lift coefficient eL, based in inlet relative velocity and blade area, and Zweifel coefficient

(tangential force coefficient based on tangential area and exit dynamic head). Also reported are the

relative gap and, in some instances, other geometrical parameters. As noted in the Introduction,

Ref. [18] also shows the results of several existing loss correlations or theories when applied to
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these cases, plus the actual measured loss factor 13. One potential difficulty in application is that

only ilia2parameters are given, whereas from the nature of our theory we suspect that mean

parameters might be more appropriate.

Starting from _0 (with the definition which agrees with that in our Appendix 9.B), _band

R, the equations in Appendix B allow calculation of the blade angles ty.2, _. The fractional

leakage, _., is determined from the relative gap _rI using Eq. (9.51). This involves the shear

strength q, which itself depends somewhat on _., so some iteration must be used. The remainder

of the calculations is straightforward. Table 9.2 summarizes the results.

Scanning Table 9.2 we first notice a large disagreement for Case 1 (Kofskey turbine). This

is an impulse rocket turbopump stage with extremely large reported tip loading (V = 7.0). As the

table shows, this leads to very large exit swirl (c;y/Cxo= - 3.2). No reasonable modification of the

theory could be found to resolve the disagreement of the 13calculated and that reported, which, as

expected for a low-reaction stage, is low (13= 1.02). A calculation was made, as shown in the

second-from-last row of Table 9.2, with a load V0 reduced to 2.0, which leads to near-axial exit

flow, and this does predict 13= 0.97, close to the measured value. This might indicate a large radial

load gradient for this turbine, but this has not been investigated further.

Excluding Case 1, the mean squared error in the predicted 13is

_'2= 1____ (13DATA-13CALC) 2 =0.1434
N N

This compares favorably with the results of applying the correlations of Kofskey, Ainley,

Soderberg and Roelke (See Table 9.1). The mean error is E = _ (13DATA - 13CALC)= 0.1734

which indicates a general under-prediction of the losses. The standard deviation is

= _= 0.337

9.2.7 Numerical Verification

The linearized solution has yielded important results, some of which defy our expectations.

It is therefore important at this point to investigate the extent to which these results may have been

/
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compromised by the linearization. To this end, we need to solve by a numerical technique the

complete non-liner actuator disk problem (Eqs. 9.28, 9.29). Inverse coordinates are still a

convenient formulation, especially in that they fix the location of the shear layer along a coordinate

line (W - WTW, x > o), thus avoiding the smearing inherent in any discontinuity-capturing

approach that could be used in direct (x,z) coordinates. Simple finite differences on a rectangular

grid can also be used effectively with such a formulation, since the main surfaces (disk, walls,

shear layer) are all aligned with the coordinate lines (x,_). The only disadvantage is the more

complex form of the Laplacian in these coordinates (see Eq. 9.32).

The method used is a form of over-relaxation, which can be constructed starting from a

minimum principle for the problem (See Ref. [26] for details). Care is taken to include the 5

function on the right-hand side of Eq. (9.28) in a consistent manner. Integrating Eq. (9.28) across

the shear layer, and, as before, using superscripts (+) and (-) for the gap and bladed sides,

respectively, one obtains at each x
f

(1+zi) I-A--- __1__]= 2Q _:
[(z_)2 (z_i,)2j (9.76)

where Q is calculated from disk velocities according to Eq. (9.27). In discretizing the connecting

condition (9.76), one-sided differences are used for z_ and z_, to avoid numerical "mixing" of the

two streams. Most of the calculations were done on a 16 x 32 grid. As a check, one case was

computed on a 24 x 48 grid, and the discrepancies (Table 9.3) were found to be below 10-3 in

relative terms.

A series of numerical results showing the two velocity components at the disk, with the

linearized theory results superimposed, are given in Figs 9.11 through 9.26. For degrees of

reaction below 0.4 or above 0.90 the agreement is excellent. As expected, the worst linearization

errors occur in the vicinity of R _=_0.8 , but even then the results of the linear theory are found to

be fairly accurate. Most importantly, the prediction that the axial velocity at the disk is piecewise

constant is clearly borne out by the nonlinear results. The only noticeable deviation from

throughflow uniformity in the bladed region occurs very near the blade tip (on the scale of the gap , ....
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TABLE 9.3

Axial and radiaJ velocities at x=O for two grid sizes

<,

.9750

.9250

.9000

Grid 16X32 Grid 24X48

(Cx)x,.o (Cx)x.o

1.36396 1.36279
•97904 .97962
•98285 .98326

(Cz)x.O (Cz)x.o

•9750 .13404 .13677
•9250 .14692 .15054
•9000 .09922 .09976
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size), and its integrated effect is in any case minimal.

9.2.8 Partial Blade-Tin Loading

9.2.8.1

One of the basic approximations made in the theoretical treatment so far is that of zero

work done by any fluid crossing the gap area. If we include under that description any streamline

which passes over one blade tip, this is clearly not an accurate assumption. Fig. 9.27, for example,

shows that, prior to crossing over, a streamtube is partially deflected by the blade, and hence does

s'-me push work on iL The magnitude of this work could be quantified if the flow angle for the

leakage fluid leaving the passages were known, which prompts us to a more detailed examination

of the flow field around the blade-tip gap region.

The blade-tip region has been theoretically treated using a variety of approaches. The

simple model of Rains [11], which is most appropriate for thin, lightly loaded blades, uses ideal,

pressure-driven flow concepts to derive the speed and direction of the gap "jet". Even for the case

of the thicker turbine blading, ideal flow is a fairly good approximation. For example, Rains [11]

gave a criterion for viscous forces to be negligible, in the form

A-(THICKNESS t CHORD (9.78)

For the experimental turbine being tested as part of our research on Alford forces, this parameter is

approximately 1000, and this situation is quite common. On the other hand, the effects of

chordwise pressure gradients on thick-blade tip flows, as well as that of relative wall motion are

still potentially significant, and have not been treated so far (see Section 5).

The gap jet is known to interact strongly with the passage flow and to roll itself up into a

concentrated vortex-like structure. Rains himself derived [11] a semi-empirical expression for the

trajectory of that vortex. Lakshminarayana [20], [21] also used empirical information on the tip

vortex location and strength to predict details of the blade pressure distribution, In fact, the

strength of the vortex was explicitly related to a "partial blade-tip loading parameter", K, varying
_N
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Fig. 9.27: Gap fluid does some work on the rotor
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from 0 to 1, and inferred from extrapolation of surface pressure measurements near the tip to the

end wall. Since there are very sharp pressure gradients in the pressure side of the blade, near the

gap, this procedure is fraught with difficulties. More recently, G.T. Chen et al. [27] have used

vorticity dynamics to simulate the roll-up process, and have been able to predict accurately the

trajectory of the vortex.

In what follows, we will introduce an alternative viewpoint which leads to simple, but

accurate expressions for the location and size of the leakage vortex. This can then be used in

calculating the flow leaving angle of, and hence the work done by the leakage flow.

9.2.8.2 Collision of the Leakage .let and the Passage Flow

Fig. 9.28 shows schematically the essential features of the leakage flow. The fluid

approaches a blade (here represented as a flat plate) with a relative velocity w2, which evolves into

the passage flow velocity _P^ss at locations not very near the tip gap. Under the action of the

pressure differential across the blade, a jet of leakage flow at velocity _jet escapes under the blade.

This jet penetrates a certain distance into the passage, but is eventually stopped by the main flow,

which separates the jet from the wall, turns it backwards, and leads to the formation of a rolled-up

structure containing both, leakage and passage fluid. This "collision" of the two streams is again

shown in Fig. 9.29 in plan form, and Fig. 9.30 shows a schematic of the flow structure seen in a

cut such as a-a in Fig. 9.29, with leakage fluid shown dashed.

Consider the situation at points along the jet separation line, such as P in Figs. 9.29, 9.30.

Ignoring frictional effects, the two streams which meet there (jet and passage flows) can both be

traced back along different paths, to the inlet flow, and hence have equal total pressures and

temperatures. Since they also have equal static pressures along their contact line, (and generally

similar static pressures throughout the region), these two streams must have equal velocity

magnitudes. If the section a-a is perpendicular to OP, we can think of point P (Fig. 9.30) as the

common stagnation point of the two "colliding" flows, approaching each other with equal

velocities, which are each the component of wjet and wP,,,ssperpendicular to line OP. It follows that

/

/'
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Fig. 9.28: Schematic of the colliding leakage jet and passage flows
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line OP must bisect the angle made by wjet and wp^ss. This gives a first and important piece of

information about the location of the rolled up structure, but, since this structure has a finite and

increasing transverse dimension, it does not yet locate its center.

To continue our discussion, notice that the transverse momentum balance of a fluid

element near point P requires that both transverse colliding flows must bring equal (and opposite)

momentum fluxes to the rolled-up structure. Since the two velocities are equal, we find that equal

m_ss flows must be entering the rolled-up structure from both fluids. In other words, the clear

and dashed areas in Fig. 9.30 must occupy equal fractions of the total "vortex" cross section. Let

8 m'r be the jet thickness, and wll, w± the common components along and across OP of the

colliding streams. The rate of increase of the cross-section A± of the rolled structure along OP is

then given by

wHdAL - 2 w± 8JET
(9.78)

or, calling 0 = tan -1 w± i.e., the angle made by the separation line OP and the blade itself,
Wll '

dA± _ 2 _T tan 0
ds (9.79)

where s is measured along the vortex trajectory.

The precise shape of the rolled-up structure is more difficult to establish, but it seems

reasonable to model it as (half) cylindrical ideal vortex in a cross-flow. Following Batchelor(14)

such a vortex is describable by the stream function (Fig. 9.31)

_F= 1.298 w± R J1 (3.83 _)sin 01 (9.80)

where R is the radius of the dividing streamline, J1(x) is the Bessers function of the 1st order (with

a zero at x = 3.83) and (r, 01) are polar coordinates. The vorticity in this flow is distributed inside

the semi-circle of radius R in proportion to _P:

(9.81)

and is zero outside. Integration of co gives an overall circulation
:i
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F = 6.83 w±R

whereasintegrationof r sin 0 co gives a center of vorticity height of

(9.82)

z¢ = 0.460 R (9.83)

We thus make A± = 21-gR 2, and measuring distance along the blade (XBL =s cos 0), we can

integrate Eq. (9.79) to obtain

_/ ltan01 8JETXBLR = 4 _cos0 ! (9.84a)

The trajectory of the vortex center then follows (Fig. 9.32) as

Ye = XBL tan 0 R
cos 0 (9.84b)

To complete the analysis, the angle 0 must now be determined. From our discussion of

the separation line OP, this angle was shown to be half of the angle 13between the blade and the jet

flow:

0 = 13/2 (9.85)

This angle 13follows from the simple local analysis first proposed by Rains [11], which

applies to thin blades when viscous effects can be neglected, In Fig. 9.33, wp and Ws are the flow

velocities on the pressure and suction sides of the blade, respectively. Application of Bernoulli's

equation relates these velocities to the corresponding pressures:

_/ - P2Wp = w_ - 2 Pp _ (9.86a)

Ws = 4 w_ + 2 P2 - Psp (9.86b)

where P2, w2 corresponds to inlet conditions. On the other hand, the leakage jet emerges form the

gap with a velocity component perpendicular to the blade of

wc=_/ 2 Pp-Ps
p (9.87)

and its components parallel to the blade is simply Wp, since no momentum is added or lost in that
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direction during passage through the gap. It can be verified that the net magnitude WjE T of the jet

velocity is then equal to w s, as indicated previously. We then obtain (Fig. 9.33)

tan = _ = _/ 1-(Cp)p (9.88)

where Cp = 2(P-P2)/p w_ in each case. Note that (Cp)p - (Cp) s is the local lift coefficient cb

referred to the relative turbine inlet velocity. Using the half-angle trigonometric formulae,

 n0= (cp) 
41 - (Cp)s + 41 - (Cp)p (9.89)

Notice that, as shown in Fig. 9.33, the vorticity vector corresponding to the shear between

the jet and the adjacent passage flow is inclined at 0 = [5/2 w.r.t, the blade, i.e. it is parallel to the

outer edge OP of the rolled-up structure, This is also the direction of the mean flow between the

two sides of the shear layer, which means that the shear vorticity is not convected at all towards the

line OP. The only reason the vorticity F rolled up into the structure increases with downstream

distance is that the growth of R gradually overlaps more and more of the shear vorticity.

Eqs. (9.84a), (9.84b) and (9.89) can now be used to calculate the vortex geometry if the

suction and pressure side Cp distributions are know from experiments or calculations. A simple

approximation can be obtained using the theory of lightly loaded thin wing profiles. In this

approximation, (wp+ ws_t2 ---w2, which when used in Eq. (9.86a) and (9.86b) reduces both

(Cp)p and (Cp)s to functions of eL = (Cp)p-(Cp)_ alone. Using this in Eq. (9.89) gives finally

4 +c L

0 = cos I (9.90)

(" )CL, CL < 4

4 +c L

Notice the relative insensitivity of 0 to eL, particularly about the common value cL = 4,

when 0 reaches a maximum of 45 °.
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9.2.8.3 Comnarison to Vorticitv Dynamics Model and to Data

Reference [27] has recently provided a means of correlating a variety of rolled-up vortex

data using a similarity analysis. Transverse distances are normalized by gap width 5, and axial

distance, or time-of-flight are characterized by a parameter

(9.91)

where x and cx are axial distance and velocity and AP = Pp- Ps. The data from many experiments

(mainly from compressor cascades) correlate well with t*. In addition, a calculational method was

developed in Ref. [27] to track a series of shed tip vortices from an impulsively started plate,

which represents the situation seen from a convective frame as the flow passes over a blade. The

calculated results were shown to also correlate well with t* and with the data.

We use the correspondence

C--A--x= COS 132 , _ = COS 13m (9.92)W2 XBL

where 132 and 13mrepresent the relative flow angles at the rotor inlet and on average in the rotor,

respectively, to derive

XBL_=_f_ W2 C0S132 t*

8JE T _ WG COS 13m (9.93)

where l.t = _SJET/8is the gap discharge coefficient. Note also that w2 = 1/.v/-C-[.
WG

For an approximate comparison, we use Rains' 4 values

COS [_m _ 1.1
I.t = 0.75; c L = 1.35;

COS 132

to relate t* to our XBL, and then calculate the vortex trajectory using Eqs. (9.84a), (9.84b), (9.89)

and (9.90). The results are compared in Fig. 9.34 to those reported in Ref. [27]. The agreement

with the data is satisfactory. Additional verification against the theory of Ref. [27] can be

provided by comparing the predictions of both theories regarding the "center of vorticity" location

in a cross-plant similar to that shown in Fig. 9.30. in order to be consistent with the calculations of
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Ref. [27], we have included here both, the rolled-up vorticity F (Eq. 9.83), and a vorticity 2w±

per unit length (perpendicular to _o) of the not, yet-rolled shear layer.

In calculating the distance ze between the center of vorticity and the wall, we took this latter

contribution to be at a distance 8jE'r, and that of the rolled-up vortex to be at 8E'r + 0.46R (Eq.

9.82). The results are shown in Fig. 9.35, which again shows good agreement between our

method and that of Ref. [27].

9.2.9 l]lade-Tip Losses Including Partial Tip Loading

9,2.9.1 Modifications of the Actuator-Disk Model

We now return to the actuator disk model, but will abandon the assumption of zero work

done by the leaking fluid. Conceptually, the fluid which crosses the gap between the casing and

the turbine blade is only partially underturned when compared to passage fluid. The fractional

work done per unit mass of leakage fluid will turn out to be of the order of 50%. As noted, an

equal amount of passage fluid will be rolled up into the leakage vortex, and will also be

underturned by the same amount. In total, then, the work done per unit mass of leaking fluid is

similar to that postulated in Sec. 9.2.2. But then, the work loss coefficient, w, which includes a

normalization by 15/H, will be larger (only 1/2 of the undertumed fluid comes from the gap itself).

For similar reasons, the coefficient _ describing the reduction of total pressure drop (Eq. (9.65)

will also be larger. The efficiency loss factor, 13,reflects these two counteracting effects and, as

will turn out, is only slightly affected by the changes.

There are three specific modifications to be made to the theory in order to incorporate these

effects:

(a) Re-defining the"leakage flow fraction", 7_,to include all underturned fluid. Of this, only the

fraction _./2 is gap flow, and this is what must be related to the physical gap, 8 (Eqs. (9.51) or

(9.52)).

(b) Allowing a non-zero total enthalpy drop for the gap flow, and relating it to the angle 0 by

which the flow fraction k underturns. This angle is supplied by a form of the theory of Sec.
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9.2.8.

(c) Recognizing that the fluid comprising X has not undergone an isentropic work-producing

process, since formation of the roUed-up vortex is intrinsically lossy.

The under-turning angle 0 should be calculated as an average which includes the rolled-up

flow, assumed to have its momentum directed along the centerline of the rolled-up vortex, and also

the portion of the gap jet which is not yet rolled up at exit (similar to the calculation described in

Sec. 9.2.8.3 for the center of vorticity). In the interest of simplicity, we will take 0 to be as given

by Eq. (9.85), i.e., the angle between the blade and the outer edge of the vortex (Figs. 9.32, 9.33).

This will to some extent cancel the modifications due to, on one hand, the angle between this outer

edge and the vortex centerline, and, on the other hand, the contribution of the un-rolled jet, which

is more strongly under-turned.

Let _m be the average angle of the rotor blades to the axial direction, which can be

calculated (Fig. 9.4) as

_m = _3- (_2)DES.
2

with

tan ([_r2)DE S = tan tx2 -

(9.94)

1 - tan or2 - tan 133 (9.95)

(_DES

The passage flow relative velocity is then (on average) wpASS = Cx/cos_m, which has

components wit and w± parallel and perpendicular to the line OP (Figs. 9.29, 9.30) which is now

taken to represent the rolled-up vortex

Wll = Cx .._COS 0 ; w± = Cx _sin 0

COS [_m COS_m (9.96)

The gap flow, for its part, has components wH and -w± in the same directions. The flow

fraction X is all assumed to leave the passage with velocity w, along line OP, and so its relative Y-

component of velocity is wll sin (_m - 0). In the absolute frame, then,
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COS 0 sin (_m °0)
cy_"= U - Cx+

cos 13m (9.97)

where we use the (+) superscript as before to denote the "gap fluid", which now, more precisely,

means all of the under-turned fluid. Of course, the rest of the fluid has a cy3 = cy_ still given by

Eq. (9.57). Also, the disk axial velocities c_, _¢ arc still as given by Eqs. (9.45), although Q will

now be different Notice that Eq. (9.98) replaces the previously used non-turning assumption

= Cxtan

Application of the Euler equation to both fluids gives the work done per unit mass by each

stream:

W+=

W" =

U (Cx+ tan ¢X2 - cy_') (9.98)

U (_ tan a2 - cyS) (9.99)

and, since ideality is assumed in the bladed region, pW- is the same as the turbine total pressure

drop in that region, i.e.

W'=B1 - B" = BI B-_ - _-(cy])2

t

(9.100)

In the "gap region", however, W ÷ is less than the isentropic work B1 - B ÷ by an amount

TAS equal the energy dissipation incurred in the mixing of the gap and passage streams. Per unit

mass, this dissipation equals the kinetic energy associated with the "destroyed" component w_L of

Eq. (9.96):

T s:X
COS _m] (9.101)

and therefore

W + = B1- B.L-+ _1.1 (Cx+)2
• /COS _m] (9.102)

Subtracting Eqs. (9.100) and (9.102), and remembering that Q = B_ - B-_, we obtain

Q-ww+1 +_ __(Cx)2 _1 (cy_-)2 + l(cy_)2
_cos 13m] (9.103)
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We can now use Eqs. (9.97) and (9.57) for the cy's, and then Eq. (9.46) for the Cx'S and,

upon substitution into (9.102), we obtain the new equation for q. Rearranging this takes the form

[(1-3.}2G, %2tan21_] (q_ + 2 [2 + _---q-Z + (1-%)G + %tan2133] (q)

- (tan2_- G) = 0

where

COS _ COS _m

which replaces Eq. (9.47).

Once q is calculated, the total turbine work per unit mass is %W ÷ + (1 - %) W-.

Normalizing,

q)
where

(cos 0 sin (_m- 0))
COS _m

The calculation of the total pressure drop is identical to that explained in Eqs. (9.59) -

(9.62), except that, as mentioned cy_- is now given by Eq. (9.97) rather than Eq. (9.57). In

particular, the static pressure drop still follows from Eqs. (9.62) and (9.23), since only ideal flow

through the bladed region is involved. Following calculation of Pto - PtMrx., the efficiency and the

efficiency loss parameter can be found as before (Eqs. (9.63), (9.64)).

(9.104)

(9.105)

(9.106)

(9.107)

9,2.9.2 Comoarison of the Theory with Partial Tia Loadin_ to Literature Data

In order to compare the modified theory of Sec. 9.2.9.1 to the same turbine data as before

(Sec. 9.2.6.2), additional data regarding individual blade loading are needed to calculate the under-

turning angle 0. This information is contained in the Zweifel coefficient ZW, which is also

reported by Ref. [18] in each case, This is related to the blade lift as shown in Appendix 9.B (Eq.
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9.Bll). The angle 0 then follows from Eq. 9.90, where the overall lift coefficient CL is used as a

representative value of the local c L.

The results for the same set of data as was used in Sec. 9.2.6.2 are summarized in Table

9.4, where the entries are the same as in Table 9.2, except for ZW and the last column, labelled K,

which is the ratio of work done per unit mass by the underturned flow to that done by the blade-

guided flow:

K=W +
W" (9.108)

Once again, Case 1 can only be brought into agreement with the data if the load factor is

reduced to about the design value (i.e., for zero exit swirl). Case No. 4, with very high reaction, is

also substantially under-predicted, which may point to an insufficient predicted undertuming 0 for

these conditions. The rest of the cases are well predicted. Excluding Case 1, as before, the mean

squared error is

e2 = 0.1162

and the mean error is

= - 0.1408

which imply a standard deviation

¢_= 0.3105

These statistics are slightly better than those found for the zero tip loading theory (Sec.

9.2.6.2), and, although they compare favorably with those for the standard methods, they also still

show some systematic over-prediction and moderate scatter. It is of interest that most of the error

and scatter (other than that due to point 1) is caused by the single high-reaction data point (Case 4).

If that entry were also removed, we would have e2 = 0.0363, _ = - 0.0498 and ¢_= 0.184.

Perhaps more effort should be devoted to an understanding of the leakage and underturning effects

for high reaction rotors. Whereas the predicted 13values in Tables 9.2 and 9.4 are similar, the ¢x

values in Table 9.4 are substantially greater than those in Table 9.2, for the reasons explained

above.
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TABLE 9.4

CASE# AUTHOR

1 KOFSKEY

2A MARSHALL
.ROGO

2B MARSHALL
-ROGO

3 EZANCA-
BEHN_
SCHUM

4 HOLESKL
FUTRAL

5 EWEN.HUBER
-_TMELL

6 LART

7 yA_(_D

8 PATEL

9

I

ZW 0 Vo R a_!

s 5 0.79 7.0 0.02 0.05

].02 0.50 ! .48! 0.32 0.035

1.09 0.44 1.25 0.35 0.035

1.59 0.57 1.46 0.47 0.033

0.35 0.26 0.69 0.69 0.031

0.70 0.25 1.05 0.45 0.02

0.92 0.51 1.41 0.51 0.02

0.79 0.42 l.S2 0.47 0.03

0.70 0.28 I.15 0.61 0.01

HAA_-KOFSKEY 0.80 0.35 1.37 0.47 0.03

KOFS_

(A.ssummg "Po=2) 0.55 0.79 2.0 0.02 0.05

(13 T^ (i+)+^Lc.

1.02 2.902

1.51 i.443

1.23 !.418

1.90 1.681

2.53 1.661

1.50 1.458

1.80 !.924

!.63 !.803

1.81 1.415

1.80 1.640

1.02 0.926

(W)C.ALC.

4.096

2.563

2.757

3.066

4.880

3.914

KCAL.

I

! .025

0.346

0.290

0.369

0.365

0.411

4.813

4.714

1.614

0.683

(1,4(_

0.473

Efficiencylossand work defectcalculau_dfromtheory(includingallowanceforpartialtiploading),comparedtodata.The lastllneis
computedwithmochfiedwork coefficientchosenforr.ear.axtalexitflow
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9.2.10 Summary and Conclusions of Blade-Scale Theory

A theory has been developed to illuminate the effects of spanwise flow redistribution

caused by the presence of a small rotor blade-tip gap. To this end, the blade-to-blade details are

ignored by using an incomplete actuator disk formulation which collapses both stator and rotor to a

plane, across which connecting conditions are imposed.

In the simplest version, the flow which leaks through he tip gap is assumed to do zero

work. The results indicate that the flow tends to go preferentially though the gap, and that the

attendant flux reduction elsewhere is very nearly uniform in the spanwise direction. The axial

length scale for this flow redistribution is the blade height, and not the gap size, as might have been

expected. As a consequence, the unloading of the turbine blades is uniform, and the work defect

cannot be localized in the near-gap region. On the other hand, the efficiency loss is due to mixing

effects downstream of the gap. In this simple model, this mixing is that between the bulk flow

and the underturned and somewhat axially faster stream going through the gap.

In order to shed some more light on the details of the gap flow, a modification was made

to the theory in which the underturned stream was recognized as originating partly from gap flow,

partly from entrained passage flow, both leaving the passage in the form of rolled-up tip vortex.

The trajectory and other details of this vortex were calculated using a simple model involving the

collision of the ideal pressure-driven leakage jet with the passage fluid. This model was calibrated

against both, data and the theory of G.T. Cheng et al. [27]. The modified actuator disk theory

allows prediction of the fractional tip loading factor K, and introduces the effects of loading level

on individual blades, which the simpler version ignores.

Both actuator disk models were then compared to a set of data involving 9 different

turbines (10 operating conditions). With the exception of one anomalous case, the calculated

efficiency loss factors are reasonably close to the data, showing less deviation than the loss

correlations of Ainley, Soderberg, Roelke, Kofskey and Lakshminarayana. The more realistic

version of the theory, which accounts for non-zero work done by the leakage fluid, predicts

substantially higher work loss coefficients.
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These results suggest that upstream flow redistributions which have been largely ignored

so far may be of importance in understanding the basic physics of tip leakage effects. It is

recognized, however, that the complete smearing out of blade-to-blade variations may be too

drastic an approximation, as the neglected scales are on the same order as the axial redistribution

scale which is retained. Further work is recommended to explore this issue.

9.3 Variable Gan and X-Y Flow Redistribution

9.3.1 Connection to the Constant-Gap Analysis

Throughout the analysis in Sec. 9.2, the gap _i has been kept as a constant, so that the

results apply, strictly speaking, only to a centered turbine under steady conditions. However, as

indicated in the Overview (Sec. 9.1), this theoretical development has wider applicability because

of the disparity of length scales (H << _R)and time scales (H << 1).f_

Consider a situation such as depicted in Fig. 9.36, where a turbine of mean radius R is

executing a circular whirl of amplitude e and angular frequency _ (positive in the direction of spin,

co). The point of maximum gap is displaced by f_t + r_ radians from the fixed X axis, and the

azimuthal location of a particular point in the gap region is specified by its distance y' (or angle

0 = y'/R) measured from the point of maximum gap. In the whirling coordinate frame X'Y', the

flow pattern is stationary (3/bt = 0), but in the fixed frame we must have

_- by (9.77)

namely, spatial variations are swept past the fixed observer, and give rise to time-dependence. For

small gaps (8/R << 1), we have a cosine distribution of gap width:

'- )8 = 8 + e cos y = 8 + e cos y - f_t (9.78a)

or

_5= Re[_" + e ei(Y/R-at)] : (9.78b)

where 8 is the mean gap, or gap when the turbine is concentric, and the fixed-frame distance y is

from the -OX axis.
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Fig. 9.36: Geometry for a whirling rotor
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Because of the eccentricity, the approaching and leaving flows will be affected over

distances of order R, and will respond by redistributing in the (xy) plane (where x is the axial

direction, and we are reverting to a purely two-dimensional description, this time in the xy plane).

Now, at distances of order R, the xz redistribution due to the gap is not present yet (or anymore,

for the fluid leaving) because the flow shifts towards (or away from) the gap over distances of

order H/n, as can be seen from the shape of the shearing streamline (Sec. 9.2.5.3).

This means that, to a first approximation in H/nR, the approaching flow can be taken to be

independent of z up to the disk, where it has already undergone rearrangement in the y direction,

and the leaving flow can be taken to have a two-layer structure with the gap jet and the blade region

flow being each independent of z. On the other hand, at distances of the order of H from the stage,

the y gradients and the time variations associated with whirl both have negligible effect, with radial

redistribution (xz) being the dominant phenomenon. Therefore, the analysis of Sec. 9.2 is still

applicable for lxl N H even in the present, more complicated situation.

The only modification that needs to be introduced into the analysis of the xz actuator disc is

the possibility of a Cyo component of the velocity at upstream distances >> H/n. This may now

exist because of an R-scale redistribution in the xy plane. In fact, if only the steady-state situation

is of interest, even this is not necessary (in the sense that Cyo = Cyo (y) does occur, but it does not

need to be kept track of). The reason is that the stator is still assumed to be ideal and to perfectly

guide the flow, so that the velocity vector entering the rotor is independent of Cyo , and is fixed by

Cxo and the stator leaving angle alone. Bernoulli's equation (between upstream inf'mity (on the R-

scale) and after the stator) ensures that the static pressure is also independent of Cyo. Therefore,

none of the flow quantities downstream of the turbine is sensitive to the tangential velocity

component Cyo introduced by the redistribution. In an unsteady (whirling) situation, where

Bernoulli's equation contains the time derivative of the velocity potential as well, this argument is

not valid, and Cyo _ 0 should indeed be introduced and kept consistently. Of course, in either case,

Cxo will also depend on y and t, because of the same R-scale redistribution, and this will directly

affect the flow downstream as well.

._ i ¸
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The effect of Cyo _: 0 on the formulation is fairly limited. For H-scale distances,

unsteadiness is ignored, and the simple form P/p + @ c 2 = const, of Bemoulli's equation applies.

Likewise, Cy is still a purely convected quantity, hence equal to Cyo throughout the H-scale region.

Because of this, the only modification is that Eqs. (9.23) and (9.24) both have an extra term - @

c_o on the right. This does not affect either the distributed vorticity (Eqs. (9.25a) and (9.25b)) or

the concentrated shear vorticity (Eq. (9.27)). The work loss coefficient w, the leakage flow _., etc.

are then given by the Same expressions derived in Sec. 9.2, using the local and instantaneous

8 = 8(y,t), Q = Q(y,t), Cxo = Cxo(y,t) •

It is to be noted here that the subscript ( )o will now denote conditions at (-x) >> H/_, but

with (-x) << R, so that the full y-redistribution is assumed to have taken place by then. Conditions

for (-x) >> R will be denoted by an argument (or subscript) of _oo.

To summarize, we now adopt a more "detached" viewpoint than in Sec. 9.2, so that dis-

tances of order R are of interest, and the whole xz redistribution process is "compressed" in a thin

region (of order H/_). This region has transfer relationships which have been explicitly obtained

in Sec. 9.2, and can now serve as a new "actuator disk" surface connecting the upstream and

downstream R-scale regions. The upstream region starts with purely uniform, steady, axial flow

at x --4 _oo, and remains ideal down to x _ 0-, meaning down to x of the order of (-H/Tz) in our

broader length scale. The downstream region starts at x = 0 +, meaning at x distances of the order

of +H/_, with a fully developed two-layer distribution of the type described in Sec. 9.2. This two-

layer structure is modulated in y and t by the rotor eccentricity, and these modulations then

propagate downstream to x _ +.o (x >> R). The following subsections analyze these R-scale

flows.

9.3.2 The Uostream Flow

The far upstream condition is one of uniform and steady flow, and so, despite the presence

of the eccentric (and unsteady) turbine, the flow remains irrotational in this region. Setting

c = (cx, Cy) = VO (9.78)
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the continuity condition then implies

V20 = 0 (9.79)

with boundary conditions of periodicity in 0y, plus Cx(-Oo) being a given constant, and downstream

conditions which match the turbine flow. For now, we assume a form for Cx(X--0-) (i.e., at

x ~ -H/z) as follows:

Cx (0-,y,t) = Re[cx(-°°) + cx0 e i(y/R- f_t)] (9.80)
A

which embodies the y and t dependencies coming from the turbine tip gap (Eq. (9.78)). Here, cx0

is the (complex) amplitude of the axial velocity disturbance as it approaches the disk, while Cx(-Oo)

is its mean value.

The solution to V2¢ = 0 with these conditions gives

Cx = Cx(-Oo) + Re [Cx0 e x/R + (y/R- f_t)] (9.81)

Cy= Re [i_x 0 ex/R + (y/R-f_t)] (9,82)

The pressure can now be calculated from either one of the components of the momentum equation.

For example,

 cx,---_- --p + Cx + Cy-_-y J (9.83)

can be integrated with respect to x. The result is

p = p(_oo)- Re {p [(Cx(-Oo)- if_R)cx0 ei(y/R- f_t) + [cxo[2] ex/R} (9.84)

Notice that no linearization has been necessary so far. The downstream solution does

require linearization, however, and, for consistency, we will simply drop the small _xd 2 term in

(9.84). The Re( ) (real part of) notation will also be omitted from here on.

9.3.3 The Downstream Flow

For x >_+H/n, after the radial redistribution is completed, we have two distinct regions: (a)

the region containing the flow which has crossed the bladed part of the rotor (quantities denoted by
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a (-) superscript); and (b) the region containing the underturned fluid (quantities denoted by a (+)

superscript). This latter region has a thickness A(y,t).

The equations of conservation of mass and momentum (x and y components) can now be

written. The quasi-one-dimensional approximation is adopted for each region, i.e. we use

variables which are averaged in z within A and H-A. The equations of continuity are

aA a(c_,a)+_=o
at ax ay (9.85)

a((n-a)c_)a(H-A) _ a((H-A)c_} t - 0
at ax ay (9.86)

and the momentum equations are

-- c+OCl + lop 0ac_ + Cx+ac_ + =
at Ox Y-_y Pax (9.87)

aC_+ .aC_+ DC_ laP_0
at c_ a---x-+ c_ _ 4 pay (9.88)

ac_ +c aC_+c_aC_ +laP=o
ax Y ay p ax (9.89)

ac_ ac_ ac_ 1 ap
+c_ - + -0

at '_--x + CY--_y Pay (9.90)

In order to obtain analytical results, we next assume that the turbine eccentricity amplitude

is small, so that A, c_, c_, c7, c_, and p can each be expressed as a mean value around the

circumference, plus a small perturbation:
D

A=A+A' ; p=p+p' ; etc. (9.91)

Equations (9.85) through (9.90) can then be linearized. Because of the y and t periodicity

forced by the turbine motion, the perturbation quantities can be expected to have variations of the

fornl

^ [ (y t)]A'=Aexp ax+i -F_ (9.92a)
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(9.92b)

etc.

where real parts are understood. The constant _ is an eigenvalue to be determined.

When Eq. (9.92) is substituted into Eqs. (9.85) - (9.90), a linear, homogeneous set of

equations can be obtained for the amplitudes A, _, etc.:

oK £X o o
R

0 0

0

0

0 0

i (H- A-)a(H-E)

0 0 0 Gt

o o o
R

cxcx + - 0 0 ct

io o_q+ - o _-_

A

A

A

=0 (9.93)

For non-trivial solution, the determinant of the matrix in (9.93) must vanish. This gives a

6 th order equation for o_:

[0t Cx + R(c" _ - _R)] [_ Cx + _(Cy- _R)] (R_2- 0t2)

x {A[ct Cx+ R(_yy-f_R)]2 + (H- A)lot c-_+ R( _ - f_R)]2} = 0 (9.94)

This equation yields 6 roots for or. When each of them is substituted in turn into the set (9.93), the

^ ^+

corresponding mode shape (i.e., the relative values of C+x,Cy, etc.) can be calculated. These six

downstream modes are listed below:

1
Eigenvalue • t_1 = - _

with _ = 1 :Normalized eigenfunction

(9.95)
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EI=(_+ ,'+ .... _-),Cy ,Cx ,Cy ,A _
' 1

= / 1 -i 1

-_ + i(c'-_-nR) ' -_x + i(_-f_R) ' -cx + i(c-_-_ R)
-i ,0,1)+

This represents potential perturbations, decaying downstream as e-x/R.

(9.96)

1
Eigenvalue : o_1, = R (9.97)

Since this implies exponential growth downstream, the coefficient of this mode must be made zero.

Mode _:

Eigenvalue : o_2 = - i c_ -_ fiR

R c_ (9.98)

Normalized eigenfunction (with (_xh = c-_)"

E2= (0,0 ,c_, c_-f_R, 0, (_ (9.99)

The various perturbations in this mode vary as

exp [R (Y - c-_- f_R x - f_Rt_t = exp IR (Y' - c--_"x)]c_ c_

where the ( )' means quantities in the whirling frame. Thus, the mode represents in that frame

variations in magnitude only of the vector c_, which convect along c_, or in other words,

convection of shear disturbances and hence of vorticity o z and kinetic energy downstream of the

blades.

Mode 3:

Eigenvalue • o_3 = -
R Cx+ (9.100)

Normalized eigenfunction (with (Cx+}3: c_) :

E3= ,c_-f_R,0,0,0, (9.101)

The nature of this mode is analogous to that of Mode 2, except this time referred to the underturned

tip region.
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Modes 4 and 5:

Eigenvalues:

0_4,5 =
c_

for A << H, this simplifies to

I I,, _ - f_Ri_,sR=C_-aR+i,_/_" _ _-aR _
c--_ - V H c+ c--_ _xx

Normalized eigenvectors (A << H, and with _4,5 = 1):

E4, 5 = + i s + , + i ,-s+sg, sg, _H 1 + s+2 , Cx Is + - s-
cxlsg- 

where

(9.102)

(9.103)

(9.104)

s + c-_ - f_R c_- f_R = +-__SL_:__S_L
= ___ ,s- = __ ,and sg Is+-s-t

The various perturbations in these two modes vary as

exp [R (Y' - s+x)+ x- R-'V H- _-x"_/A'- c-_ [s+ - sJl

Thus, in the whirling frame, there is mostly convection along the mean velocity c_ of the upper

layer. In addition, one of the modes decays slowly, the other grows slowly, both in proportion to

the magnitude of the difference between the tangents of the flow angles above and below the shear

layer (w.r.t. axial). This can be viewed as a restricted form of a Kelvin-Helmholtz instability,

where only the wavelength 2_R has been allowed, and the flows are confined between parallel

walls (which limits the growth rate to the order _-]H-).

It can be verified directly that, in the whirling frame where the motion is steady, Modes 1,

4, and 5 are iso-energetic (total enthalpy conserved). The same holds for Modes 2 and 3 in the ( )+

and (), regions, respectively. Of course, the unsteadiness does introduce flow work when

viewed from the timed frame,

The general downstream perturbations are then a superposition of Modes 1-5:
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c+,c_,Cx,Cy,A, _ =EKiEi

i=l

with complex constants K i to be determined.

9.3.4

(9.105)

(9.106)

The Upstream-Downstream Connection

The results of Sec. 9.2 relate the flow quantities at x >> H/g to those at -x >> H/re. The

analysis was done for a constant gap 8 (uniform and steady), but our scaling argument allows us to

apply these results when _ = _i(y,t) as well. Specifically, the following dependencies can be

established:

cy0/q=q H-'* '-0-]

Cx Cx

cy0/
_-u/.'* 'T]

C____: c; ( 8__ Cy0/

U U/H '* '-U---]

U U '

H H

P('_) - P - c ( g CY°)P U2 p g,d? '-0--

where _ = cx0/U and the other symbols are as in Sec. 9.2. All the quantities on the left are
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understood to be for x >> H/_, i.e. for x _ oo in the analysis of Sec. 9.2.

Consistent with the linearized approach for the downstream and upstream flows (relatively

small y- and t-dependent disturbances), the functions of 8/1-1, ¢, and Cy0/U in (9.106) will be each

evaluated as the sum of its value at (8-/I-I, _, Cy0/U), plus first order disturbances due to (8'/H, @',

P

Cy0/U). These disturbances can be obtained by differentiation of the functions in (9.106). In terms

of the complex amplitudes (A), this takes the form,

m --

A

+
Cx

A

+

Cy

A

m

Cx

A

m

Cy

A

A
A

p

Cy (X=0") _ e 3

= ( )2+
_t_ U Cy0

m

+
Cxoo

+

Cy

Cx o

Cy
A

Po-P_

P

(9.107)

The last line in (9.107) needs some clarification. The perturbation p downstream of the disk, as

given by (9.107), accounts only for the pressure change between x N -H and x N H, which is what

the model of Sec. 9.2 provides. In order to obtain the full pressure non-uniformity, this must be

supplemented by the perturbation of the upstream pressure, as given for instance by Eq. (9.84).

Expressions similar to (9.107) can also be written for intermediate variables such as q and

_.. These are needed in the process of constructing from the theory of Sec. 9.2 the partial

derivatives in (9.107). Alternatively, these partial derivatives can be calculated as finite difference

ratios obtained by repeatedly exercising the computer codes which solve the equations of Sec. 9.2.

/

9.3.5 Solution for Upstream and Downstream Flow Constants

We can now equate the downstream amplitudes, as given by Eq. (107) (plus the P0/P

contribution from (9.84)) to the modal superposition expressed by (9.105). In (9.107), we also
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use, from (9.81) and (9.82)

^( )^cx x=0" Cx0

U U (9.108)

--1
U U (9.109)

The result is a system of six linear equations for K 1 through K 5, plus _x0. The terms proportional

to e' = e/H in (9.107) are the forcing terms, which determine all the perturbation amplitudes.
-- A

In the following, we take purely axial flow at -x >> R, which leads to Cy0= 0 (but Cyo¢ 0)

and hence the sensitivities to Cy0 are all zero (Appendix 9C). We also use the shorthand

m

+' +- , - = Cy- _RCy = Cy f_R Cy'

The resulting system, after moving terms in Cxoto the left, is

(9.110)

K1 -W 3Cx+ cx0_ 3Cx+ e

--+ --+, " Cx K3-i'f_ s+ (K4'Ks) - 3_ U 3(8/H) H-
-c x + i Cy

(9.111a)

3c; cx 0 3c; e

-i K 1 -g, _ (K4-K5) 3, U 3(8B-I) H__ __ +Cy K3+i -_=
+ • +t

-C x + 1 Cy

(9.11 lb)

A

K 1 -- 3c x
+ Cx K2- s+sg (K4+K5). 3Cx cxo e

3_ U 3(8/H) H-- --_p

-c x + i Cy

(9.11 lc)

-i K 1
m

-c x + icy'

-_, 3C; x0 3Cy e

+Cy K2+ sg(K4+K5)- 3--_---_---= 3(_i---_/H)H (9.11 ld)

H l+s +2

"c_/s+_ _ (K4+K5)

3A _xo 3A e

3_ U 3(8/I-I) H
(9.111e)

K1 + s+- s-I (K4+Ks)+
30 u

+ (eXo- if_R) _xo :-
3(8/I-I) H

(9.1110
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°

Notice, in particular, the term (_x0-if_R} cx0 m the last equation. This is -P0/p from Eq.

(9.84). In the partial derivatives (O/OO0),_/l-I is understood constant, and similarly, _ is constant in

The system (9.111) can be solved for C4u:

(9.112)

H

U 3Cp +_- it2R- i__ + i._y' 3(_/U)l___.t2[s+ _s-_ [[s+ _s_[ + i(sg)(1 +s+s_)] 3(_/i_O U _ _U/ 1 +s_

After this, the other unknowns follow easily from (9.11 la-f): (K4+Ks)/U from (9.11 le), K1/U2

then from (9.11 lf), K 2 then from either (9.11 ic) or (9.11 ld), and K 3, (K4-Ks)/U from the

system (9.111 a), (9.11 lb).

Once the constants K1-K 5 are known, the downstream velocity components, pressure and

layer thickness can be calculated (Eq. (9.105)). In using Eqs. (9.111) and (9.112), it must be

remembered that C+x,Cx and their perturbations and averages must refer to "x = oo" on the H-scale,

not to the disk itself.

9.3.6 Calculation of Radial Forces and Alford Coefficients

The work done per unit mass is _W + + (1-_,)W-, where W + and W- are given by Eqs.

(9.98) and (9.99). In the simpler theory of Secs. 9.2.1 to 9.2.7 with no work done by gap flow,

W + = 0, whereas in the more general version (Sec. 9.2.8), we have c_3 = U - g c+, with g defined

in Eq. (9.107), so that W + _ 0. Using Cy2 = c x tan (x2 for the tangential velocity after the rotor, the

work per unit length is

fyU = pcx0H [%W+ + (1-_.)W-] (9.113)

which gives for the tangential force f, per unit length,

fy= pcxoH [_,lc; -c;3} + (1-_'){Cy2- Cy3}][ [ 2 _ (9.114)

This applies at each y station. The quantifies Cx0, 3, c_, c_3 c_2, and c_3 all have azimuthal

j .

/

,,H,,
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variations,which leadto anazimuthallyvaryingfy aswell. Takinglogarithmicdifferentials,and

assumingthebasicform ( )' = () exp [i (Y "Rf_Rt)] for all variations,

_y= _ _ [(c_2-c_3 ) - (_-c_3}] + _ (c_-c_3)+ (1-_)(_-Cy3)
+

fy cx0 _ (c_2 - c_} + (1-_)(c-_ - c_) (9.115)

For the simpler form of the theory (K = 0), this simplifies to

fy_ +Cr2-
fy cx0 1-_, c_2-c_3 (9.116)

These forces are projected onto the OX' and OY' directions in Fig. 9.36 (namely, along the

turbine instantaneous displacement and at 90 ° to it). Only the perturbation part fy' of fy contributes

to the ne_.__ttprojected forces:

F x,= fy'sin dy
(9.117)

_RFy,=-" fy' cos Ydy (9.118)

where, as before, y' = y - f_Rt. Since each perturbation quantity varies as Re [(^) exp (i Y'/R)],

we obtain

FX,= -r_R Im(fy )

Fy, = -rcR Re(fy)

(9.119)

(9.120)

where Re and Im stand for the real and imaginary parts of a complex number.

By analogy to Eq. (9.4), we define direct-force and cross-force Alford coefficients as

O_x -" __

2R F x, F X ,

Q (e/H) rcR fy (e/H) (9.121)

O_y -=- m

2R Fy, Fy,

Q (e/H) _R t'y (e/H) (9.122)
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so that (_y is positive for a forward-whirling force, and (_x is positive for a de-stabilizing direct

force. These can be rewritten, using (9.119) and (9.120) as

o_x = -Im fY

(e/H) (9.123)

O_y= -Re[- f---y

[fy (e/H). (9.124)

and the quantity in brackets is obtained from (9.115) or (9.116), depending on the model adopted.

There are two ways in which the R-scale azimuthal flow redistribution can affect the f'mal

results, namely the Alford coefficients o_x, (_y. First of all, in Eq. (9.115), the term cx0/cx0 is a

direct contribution of that redistribution (nothing like this appears in the original Alford model, or

models, based on the use of local work loss). In addition, the nonuniform perturbations of the
/

amount of underturned flow (_)and of the underturning itself ICy2- _Y3Jcan also be affected.

These terms would be present in a purely local analysis, but may be different in magnitude and

,, /-
phase. Of these, the direct effect of Cx0 Cx0 is the most important, as the calculations will show.

A gauge of the importance of redistribution is provided by comparing the oty cross-force

coefficient to the work loss coefficient w that was introduced in Secs. 9.1 and 9.2. If we simply

assume that redistribution is absent (_x0 = 0}, and that w = _, is constant around the periphery, then

federation(1
and

fy___

in terms of amplitudes,

fy _ _ (e/H)

Since _, is a real number, Eqs. (9.122) and (9.124) then give

332



o_x = 0 (9.125)

O_y= W

(9.126)

This is a modification of the Alford argument only in so far as w and not 13(the efficiency

loss) appears. This is a fairly straightforward change to make: only the nonuniformity of actual

blade forces matters, not that of the isentropic reference work used to calculate efficiency. Thus,

differences between COyand F¢, as well as non-zero otx values, would indicate redistribution

effects. Also, Eq. (9.126) would give a cross-force coefficient which is independent of _,

whereas redistribution will introduce _ dependencies. Numerical results will be shown in the next

section.

9.3.7 Theoretical Results Including XY Redistribution

Results will first be shown for the parameters of our experimental turbine:

ot2=70 ° , 133=60 ° , s/b=0.756 (solidity)

8/1-I = 0.03 or 0.0187

= Cx0/U from 0.3 to 1.1 (0.58 = design condition)

Starting with the "nominal" radial gap, 8/I-1 = 0.03, Figs. 9.37 to 9.43 show the most important

static (f_ = 0) redistribution parameters versus flow coefficient, _. The quantities plotted are

magnitude and phase angle of {_4Ue'I etc. It must be recalled that a phase of zero means the

quantity is sinusoidally distributed in y/R, with its maximum value where the tip gap is maximum.

A positive phase angle indicates peak value shifted from that location in the rotational sense, and

vice versa.

Figure 9.37 shows the upstream axial flow velocity perturbation, c e'. Its magnitude

varies from 0.1 to 1.2, and its phase is near zero throughout. At design (_ = 0.58),

C_e' _ 0.343 + 0.029 i. Thus, the flow is increased near the maximum gap region, as was

anticipated, and one can expect from this term alone a reduction in the Alford cross-force

coefficient _y (Eqs. (9.123), (9.115)) by Re c_o cx0e , i.e. 0.343/0.58 = 0.591. This is a
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strong effect since, in the

2-D theory, we calculate ay = w = 2.10 for the same conditions.

Figures 9.38 and 9.39 show the redistribution of the gap and bladed region flows c_ and

c_. Notice, in particular, how Cx is less than _0 (about 1/3 at 0de.sign), because about 2/3 of the

extra flow _x0 going to the large gap region is actually shunted to the gap itself.

The tangential velocities c_ and c_ have perturbations shown in Figs. 9.40 and 9.41.

These variations, together with those in c_2 and Cy2 at the stator exit, also reduce the Alford force

(Eq. (9.115)), since the higher flow through the region with wider gap also implies a larger change

in tangential velocity through the rotor.

The pressure drop through the stage "P0-P_," is also redistributed as shown in Fig. 9.42.

Near the design point, this redistribution is relatively small, and has near zero phase angle. For a

first approximation, this azimuthal variation of pressure drop could be neglected, which amounts to

retaining only the first term in both numerator and denominator in Eq. (9.112) for _x0" This gives

CJUe' = 0.292 (exact 0.343+0.029 i). This will be exploited later.

The thickness variation A of the underturned flow region is seen in Fig. 9.43 to be in phase

with the gap itself. The Alford coefficients are shown in Figs. 9.44 and 9.45. Figure 9.44 shows

w, the 2-D result, calculated according to Sec. 9.2 (including partial tip work), and here re-

interpreted as the Alford cross-force coefficient t_, if redistribution were ignored. The a x would

then be zero. By contrast, the results including redistribution are shown in Fig. 9.45. We see that

_y has the same trend (decreasing with _) as w, but is greatly reduced (2.1 to 0.7 at design) by the

relieving effects due to XY redistribution. In addition, a non-zero ctx now appears, driven by the

existence of non-axial flows downstream of the turbine, which skew the passage flows somewhat.

At design, a x is stabilizing (abut -0.13).

The effect of varying the mean tip gap _5is predicted to be small, in consequence of the

small degree of nonlinearity of the theory in Sec. 9.2. A representative sample is included in Fig.

9.44: reducing the gap from _/H = 0.03 to 0.0187 changes w from 2.10 to 2.13.

The unsteadiness effects are next evaluated. Figure 9.46 (a,b) shows that increasing the
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whirl frequency f_ (normalized by spin rate, co) has the effect of increasing the amplitude of the

redistribution, with minor phase changes only. The consequence is a further decrease in t_ (Fig.

9.48), and small changes in o_x (Fig. 9.47). The decrease of _.y with f_ is, of course, equivalent to

a dynamic damping of the whirl. It must be remarked here again that this strong damping is

entirely due to the XY redistribution effects, and would be reduced by any effect tending to reduce

that redistribution. In fact, as we will later see, our static force data support values of _y which are

closer to the t_ = w result of the 2-D theory than to those of the full-XY redistribution theory,

which suggests that one or more such effects are at work.

Having examined variations with operating point for one turbine, we can now complete the

discussion by presenting results for a variety of turbines, each of them operating at their design

point. The Alford coefficient O_yis shown as contour lines in a degree of reaction (RDESIGN) vs.

flow coefficient (t_DESIG N) map in Figs. 9.48-9.51. Figures 9.48 and 9.49 are for 8/H = 0.3 and

0.0187, respectively, but both with validity s/b = 1. Figures 9.50 and 9.51 are for s/b = 0.5. In

all cases, the most apparent trend is for increased cross-force as the degree of reaction increases.

This is the same trend discussed in Sec. 9.2 for the efficiency losses. Values up to about _ = 1.2

are predicted for 50% reaction machines at flow coefficients above _ = 0.4. Notice that these are

results of the theory which allow full XY redistribution, and are therefore lower bounds.

As noted before, the effects of gap width are minor. The effect of increasing solidity,

therefore, unloading individual blades, is somewhat stronger, but not dominant (see Figs. 9.48

and 9.50, for instance).

By contrast to the situation with ty3,, the direct force Alford coefficient, txx, is found to

depend mainly on flow coefficient, and only secondarily on design reaction. This is illustrated in

Figs. 9.52-9.55. The t_x'S are all negative at these design conditions (restoring stiffness) and, like

the t_y'S, they depend marginally on _5/H and only weakly on solidity.

9.3.8 Effects of Axial Rotor-Stator Gat_

As noted, the inclusion of XY redistribution has the effect of dramatically reducing the
,i _¸
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i

predicted cross-force Alford coefficient 07 from about 2.1 to around 0.7 at our design conditions.

On the other hand, the data from the dynamometer (See. 4 and 5) indicate (a) levels of 07

(corrected for pressure effects) between 1.7 and 2.3 roughly, and (b) a trend to decrease 07 with

the gap d' between the stator and rotor hubs, with perhaps a weaker trend to decrease as well with

the distance d between stator and rotor blades. These experimental results, together with the

theoretical understanding of the origin of the low predicted 07, prompt us to a re-examination of

the model assumptions. In particular:

(i) The calculation of stator pressure drop and stator exit tangential velocity in Sec. 9.2 is based

on the radially redistributed velocities Cx+, cx. This is consistent with the "actuator disk"

approach, which reduces all stage effects to the x=0 plane but, since the distance between

stator and rotor blade centers is of the order of the blade height H, while the axial length for

radial flow migration was found to be H/_, it is probably an unrealistic assumption. The

separate velocities Cx+, cx should be adequate as mean rotor axial velocities, but the splitting

must occur somewhere between rotor and stator, so that Cx0 must be a more accurate

representation at the stator. Notice this would be indeed redistributed in the tangential

direction, however (Cx0 = Cx0 (Y')). This modification should partially decouple the upstream

pressure field from the rotor tip gap non-uniformity, and so reduce the extent of the XY

redistribution and raise the predicted 07.

(ii) For the hub gap values used (1.3 to 38% of chord), a relatively open communication exists

between the rotor-stator space and the large volume enclosed by the stator hub cap (see Figs.

2.14 and 3.1, for example). This can create enough "breathing" in and out of the cavity to

largely average out the smile pressure in the space between stator and rotor blades. As a

consequence, the upstream flow may become nearly uniform but, at the same time, the new

flow injected into the interblade space (or the flow lost through the hub gap) will still have the

effect of putting non-uniform flow through the rotor. It is not clear a priori to what extent these

effects cancel each other. A further complication is that flow entering the interblade space will

carry only small amounts of tangential momentum (Cy 2 between 0 and the wheel speed U,
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compared to the Cy 2 = Cx0 tan ct2 of the flow coming through the stator blades). On the other

side of the perimeter, the flow lost through the gap is stator-guided flow, and therefore the

perturbation force fy' (y/R) due to this effect is non-sinusoidal. Also, since the radial flow

velocity at the hub gap is proportional to the square root of the driving pressure difference,

nonlinearity is introduced in an essential manner. In particular, a very small P2(Y) perturbation

amplitude is sufficient to drive a proportionally much larger flow into and out of the hub cavity,

while at the same time being too small to produce any significant _x0 amplitude.

(iii) As implied by the discussion of (ii), increasing the axial hub clearance can be expected to

reduce .r,e pressure nonuniformity P2' between the stator and the rotor. Since this perturbation

is skewed azimuthally such as to provide a forward-whirling contribution to the cross-force Fy,

there will be a corresponding reduction of this contribution when axial clearance increases. This

third effect opposes those of (i) and (ii).

The first of these effects is very easy to incorporate into the analysis. All that is required is

to replace Cx+ or cx in the stator by Cx0, while retaining them in the stator. This affects the

calculation of P2 (station 2 is between stator and rotor) and also of the turnings c_2 - c+Y3and

c_2 - c_3 used in calculating W + and W-, and therefore O_y.. As expected, this modification does

reduce the flow redistribution and increase the predicted t_y. This is shown in Fig. 9.56, which

refers to our own turbine, with a tip gap 8-/H = 0.03. It can be seen that _xJ is reduced by about

1/3, and its phase moves also further away from zero. The effect on Cry is shown in Fig. 9.57.

This includes the 2-D predictions (O_y= w), the 2-D predictions with "stratified" stator flow (i.e.,

using Cx+ and _ in the stator), and the 3-D predictions with radially uniform axial velocity, cxo. At

the design condition, _ = 0.58, 0_y goes from 0.7 to 1.25 in the latter case. A similar increase in

10_xlis seen in Fig. 9.58.

Since the dynamic effects come entirely from the re-distribution in the R-scale, the

modification to cxo at the stator can be expected to reduce these effects as well. Figure 9.59 shows

O_yvs. normalized whirl speed, and should be compared to Fig. 9.48, where the stratified stator

assumption was used. The modification to the level of o31 is at all f_ values about the same as at
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f_ = 0. This seems to indicate little change to the slope, or damping factor, although the fractional

increase in ay is clearly higher at high _, where the stratified model predicted zero or negative 0_y.

The hub gap is more difficult to account for properly. However, given the importance of

the observed trend with d', a simplified theory has been also developed for this purpose and is

explained in Sec. 9.3.8.1. The direct contribution of the pressure modification (point (iii) above)

has not to date been incorporated into the theory.
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l "
9.3.8.1 Apalvsis of Hub Gao Effects

Figure 9.60 shows the situation when the local pressure P2(Y) between stator and rotor is

below the mean value P2 prevailing in the hub cap volume. Some flow then comes from that

volume and flows through the rotor disk. Let this be a fraction It of the local incoming flow

too(y). As before, the fraction _.m o is underturned at the blade tips, and the rest (now (1 - _, - it)

too) constitutes the main flow. Of course, when P2(Y) > P2, the fraction itm o of the stator flow

will leave via the hub gap, so that the fractions L and 1 - _, - it will fill the rotor passage.

The flow itm o entering the passage from the hub volume will carry a tangential velocity c_

somewhere between zero and U = oR, as determined by frictional balance in the hub volume.

This is much less than the Cy component of the stator-delivered main flow, and variations within

the stated range will have secondary effects only. We will specify c_ by means of the parameter

aY = c--_U (0 < ay <1 ) (9.127)

The axial velocity ca of this flow fraction as it leaves the turbine rotor can be found by

imposing that the rotor static pressure drop be the same for this stream as for the main flow:

_ (Cx tan _3)2-1 (Cx tan tx2-U)2 = 1 (caxtan _3)2-1 _-2-(Y U) 2 (9.128)

which gives

Cxtan'*21ca= (Cx)2+ {c}2-c xtan0t2- 2UI[ t_- _133 (9.129)

The velocities Cx+ and cx corresponding to the undertumed and main streams at the rotor can

be found by a simple extension of the arguments in Sec. 9.2.

Using _, << 1 and it << 1, we find (with either it > 0 or it < 0)

Cx+= l__vq+ It
Cx0 2 (9.130)

c__.__._= 1 + (1-_.) q + it
cx0 2 (9.131)
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which replace (9.46a,b). When these are substituted into the definition of the shear layer strength

Q = c_ q, the new quadratic equation for q differs from Eq. (9.104) only by small terms of order

It, which can be ignored as leading to 2 nd order corrections only.

The pressure P2 in the stator-rotor space is found from Bernoulli's equation. We now

adopt the viewpoint that the stator flow is still radially uniform (c x = Cx0 (Y)) and find

_L_= tan2 a2 (9.132)

where P0 itself may have a y-dependence, as in Sec. 9.3. For the steady-offset case, this

dependence is also given by Bernoulli's equation, leading to

P-_, - P2 _ 1 + tan 20t 2 1 -
P 2 c_-2 -c_3 (9.133)

or, in coefficient form

P-._ - P2 1 + tan 2 o_2 ¢ 2_ 1 (_) 2
CP2= pU 2 - 2 (9.134)

The pressure drop between 2 and x >> H is the sum of P2 - P3 and P3 - P_. The first of

these can expressed as

P2- P3 -lP 2 (cx° tan _3)2 - 2-1(Cx° tan°t2- U) 2 (9.135)

while the second part is

P 2 (9.136)

where, usingrl =__.(q/2)+l.t, sothat(_/c_0)= l+rl, wehaveC_= 1 +2 _. Therefore, againin

coefficient form,

c_ P3- P** - 0__ tan2133- 1 (_ tano_2- 1)2 + _-_rl (2 + 3rl)
(9.137)

The radial in or out flow through the axial hub gap d' is driven by the pressure differential

P2 - P2. After normalizing by the incoming mass flux, we obtain
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IX= d', s lc )
where cp2 Cp2 - _ and sg c = +1 or -1, depending on the sign i.e. flow is out of the

cavity (It > 0) when P2 is less than P2 (Cp'2 > 0), and vice versa.

Notice the essential nonlinearity in Eq. (9.138). In order to proceed with our assumption

of sinusoidally varying quantities, we need to neglect the higher harmonics of _ sg(c_ when

Cp'2 itself is sinusoidal in y/R. Letting g) be the phase of C'p2,namely, Cp2"= Re [Cp2ei(y/R)] and

_2 = _P_ ei_, we obtain for the _ of IX:

(lStHarmonic) = 1.1128 _/_ d' ff_ ei_
H (9.139)

where the numerical factor i_ --_ F2/I/
3_3/2 /41"

In order to connect to the downstream flow without the complications of the multi-mode

behaviors of the perturbed three-layer structure (undertumed stream, main flow, and axially leaked

flow), we now make use of one of the results obtained before, namely, that the downstream

pressure nonuniformity is relatively unimportant (see Sec. 9.3.7). If we carry this behavior to the

present analysis, and postulate that P_o' = 0, i.e. c_-C'p2 + (@}' = 0, we can close the problem and

obtain its solution in relatively simple form. In linearized form (about azimuthally uniform flow),

the above approximation amounts to

(3Cpr/ cx°+ _+ _ ,_ (9.140)

w erec / "= 19U2. This gives the upstream flow redistribution cx 0 in terms of

eccentricity e/H and axial hub gap flow tx (actually, the amplitude _ of its tangential variation).

This quantity itself depends on _2 through Eq. (9.139), and _ can be expressed as

=_ 3, + 3(a/H) H -_- a,, ac (9.141)
3Cp2 _ ""P2 = 0

where, if the stator is taken to have axial velocity Cx0, we have (Eq. (9.134)) 3(8/H) 3IX

Elimination of Cx0/U and _ between Eqs. (9.139), (9.140), and (9.141) yields an equation
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where k = 1.57378.

(9.142)

So far, _1_ has been taken to be a general complex quantity. However, Eq. (9.142) shows

that it must be either real positive (¢ = 0) or real negative (¢ = n). Both possibilities can be

accounted for if _1_ is calculated as

_Pz = r2 sg(C) (9.143)

where r = _ obeys the quadratic equation

r 2 + B r- ICI = 0 (9.144)

and B and C are

B = 0_) 0Cpr/0£ b £b (9.145a)

C = _cl_ 3Cpr/0(8/H) e

3£b 0Cpr/0£ b H (9.145b)

As before, sg(C) is the "sign" function, equal to +1 or -1, depending on the sign of C. The

same meaning can be attached to the factor ei¢ in calculating _ from Eq. (4.139). For all cases of

interest, we find sg(C) = +1, or £b= 0.

Equation (9.142) (or (9.144)) is clearly nonlinear in d'/H. Two limits of interest are:

(a) Very small axial hub gap, d'/H = 0. Then Eq. (9.139) gives _ = 0, and (9.140) and

(9.142) show finite limits for CPzand cx 0. In particular, the latter is then

_x0=_0cpr/0(8/H) e

U 3Cpr/0_ ) H (9.146)

Comparison to (9.112) shows that the present approximation is equivalent to retaining only the
A

first term in the numerator and the first two in the denominator of the exact formula for cx0/U.

(b) For relatively large hub axial gap, such that B 2 >> 4 ICI (Eqs. (9.145), the first term in
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ICI] ~ __.k._ Thus, the pressure becomes nearly
(9.144) becomes insignificant, so that _ = _ B ! (d'/H) 2"

uniform in the space between stator and rotor, but substitution into (9.139) shows that _ tends

then to a non-zero constant limit:

-- "0Cpr/b(_/H) e > 0
11--->

bCpr/3i x H (9.147)

From Eq. (9.140) we then find that cx0/U also behaves as 1/(d'/H) 2, and dies out at the

same rate as Cl_ as the axial gap increases. Thus, the residual pressure nonuniformity, too small to

induce appreciable upstream flow nonuniformity, can still drive leakage flows through the axial

hub gap. This is due to the square root dependence of Ix on P2 - P2.

To complete the development, an expression is needed for the Alford coefficient OCy(ocx = 0

now, since no rotation of the flow pattern occurs in this simplified model). The tangential force

per unit length is now, when Ix > 0,

fy = Pcx0H [_, (c_2- c_3) + (1-_.)(c_2- c_3) + Ix (c}2- c}3)]

When Ix < 0, only two streams occur in the rotor:

fy= pcx0H [_. (c_2-c_3 ) + (1-)_,+Ix)(c}2-c}3)]

These forces are now projected as in Sec, 9.3.6 and integrated around the perimeter, the

only difference being that Eqs. (9.148a) or (9.148b) must be used, depending on the sign of Ix

(positive from -_/2 to +re/2, nes,_tive in the rest). The result is a generalization of the previous

results to the form
-- +

x-b',+ ,,-t-'t ^ - -+ - _
Cx0 L_Cy2_Cy3]+_,[(_2_C_3)_(C_2_Cy3)]+(I_Z)(_yy 2 _)+_(_20Y3) (_J2--CY3)" 2

(9.148a)

(9.148b)

(9.149)

The last term in the numerator deserves some comment. The new flow _ introduced

through the axial gap d' does work in proportion to _Y2- _Y3over the half-perimeter where _ > 0,

which is that surrounding the point of widest tip gap. Over the other half, near the minimum tip

gap, there is a flow _ 121, and work is lost in proportion to Cy2- Cy3" Upon integration, these
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two effects reduce the Alford force in proportion to the average of both tangential velocity changes.

This direct effect of the gap d' (a reduction of O_ydue to work done by the flow txrrl 0) is

countered by the reduction of cx0 which also occurs as d' increases. This is clearest in the ftrst term

of Eq. (9.149), but it is also noticeable in the term (1-_)(_- _3)' because smaller cx0 leads to

smaller tangential velocities as well. The other terms in the numerator are minor. The new _ term

in the denominator is a shift of the mean force fy due to the different amplitude of the fy (y/R) curve

vs. y/R over the two halves of the perimeter. Its effect is small.

9.3.8.2 Results and Discussion

For our design condition (_b= 0.58, ¢x2 = 70 °, 133= 60 °, s/b = 0.756, d/H = 0.03), and

assuming the hub gap fluid is injected with _ = 0, Table 9.5 shows calculated results. Notice

that, because of the nonlinearity introduced by the hub gap, a particular rotor eccentricity

(e' = e/H = 0.01) must be specified.

The first row in the table is for d' = 0, and would correspond to the previous theory, where

no hub gap was allowed, except that the neglect of all downstream pressure nonuniformities has

some distorting effects. In particular, the total oty is calculated as 1.617, compared to about 1.25

(Fig. 9.56) from the full theory. Shown in that line are the upstream nonuniformity amplitude

cx0/U, the nonuniformity of pressure between stator and rotor (CP2)'and the various contributions to

Oty. The reducing effects of cx 0 on _y are clearly seen in (O_y)1 and ((_y)4.

As the axial hub gap d' is opened, we can see a rapid decrease in both ix 0 and _2' reflected

directly in decrease in the negative _3' contributions (O_y)1, (¢Xy)4.. At the same, however, a

negative contribution from the new injected flow (term (oty) 5) now appears. The net result is an

increase in Oty. This increase is rapid for small d', and tends to approach a limit at high d' values.

Half of the total increase is gained when d'/H ___-0.012.

The sensitivity to the poorly known value of cay2 was tested and is shown in Table 9.6.
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TABLE 9.5

CALCULATED RESULTS USING SIMPLIFIED THEORY
WITH AXIAL HUB GAP d' _ 0 AND e' = e/H = 0.01

t.,o

'-,,.I

t,O

t

m

H

0

0.02

0.05

0.1

0.2

0.4

0.1258

0.04395

0.01329

0.00390

0.00102

0.00026

e p

0.6238

0.2179

0.06588

0.01933

0.00506

0.00128

0

2.333x10-3

3.483x10 -3

3.773x10 _

3.862x10 -3

3.886x10 _

(%h

-0.2169

-0.0758

-0.0229

(%h

-0.0189

(%)3

1.9598

(%h

-0.1066

(%,)5

-0.0075

-0.0032

1.9731

1.9781

-0.0373

-0.0113

0

-0.1586

-0.2180

-0.0067

-0.0017

-0.0004

-0.0018

-0.0014

-0.0013

1.9796

1.9800

1.9802

-0.0031

-0.0008

-0.0002

-0.2362

-0.2418

-0.2433

Notes" (O_y)l = contribution in Eq. (9.149) from term in

(ay)2 = contribution in Eq. (9.149) from term in _3-_2

(O_y)3= contribution in Eq. (9.149) from term in _,

(Oty)4 = contribution in Eq. (9.149) from term in _3-_2

(¢_y)5 = contribution in Eq. (9.149) from term in

5

i=l

1.6174

1.6940

1.7227

1.7315

1.7342

1.7348



TABLE 9.6: SENSITIVITY OF O_y (d' LARGE) TO 42

For all cases, ay (d' = 0) = 1.6174

%/u

0.0

0.5

1.0

ay(6'/H= 0.4)

1.7348

1.7132

1.6662

It can be seen that, for _:,/U up to about 0.5 (a likely limit), there is very limited sensitivity.

As noted, the d'/H effect introduces nonlinearity into the problem. To test whether this

ought to be visible in the data, results are shown in Table 9.7 for ay (e/H) at two different values

of d'/H.

TABLE 9.7: LINEARITY CHECK VS. ROTOR OFFSET

e/H 0.002 0.005 0.01 0.015 0.02

_V (d'/H= 0.02) 1.7002 1.6898 1.6799 1.6737 1.6694

av (d'/H= 0.4) 1.7121 1.7125 1.7132 1.7139 1.7146

A purely linear behavior would be indicated by a constant O_ywhen e/H varies. For a small

axial gap (d'/H = 0.02), there is a slight "softening" type of nonlinearity but, interestingly, for a

wider axial gap, this changes to a "hardening" type. Both are small, however, and would be

within the error band of the experiments.

9.3.9 Summary of Redistribution Theory

The following points have been clarified by the theoretical developments in Sec. 9.3:

(a) In the absence of all axial gap effects, the flow responds strongly to the turbine offset, by

migrating preferentially towards the location where the blade tip gap is widest.

(b) This migration alleviates substantially the Alford cross-force from its value predicted using a
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purely local work loss coefficient.

(c) A second effect of the above redistribution is the prediction of substantial dynamic damping,

which would be essentially absent in a purely local treatment.

(d) As a secondary effect, the non-symmetries of the downstream flow also introduce a direct

(restoring) Alford force.

(e) Revision of the assumptions to limit the radial flow redistribution to the rotor only, and not the

stator, reduces the upstream flow redistribution in the azimuthal direction, and increases the

predicted _3' (by almost a factor of 2 at design conditions).

(f) Allowing the effect of flow injection from (or storage into) the hub cap volume, through the hub

axial gap, further increases the predicted O_y. The increase nearly saturates when d'/l-I > 5%.

(g) Additional work is required to integrate the direct effect of axial clearance on pressure-derived

cross forces into a complete predictive scheme.

i¸
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Annendix 9A: Disk versus Downstream Disturbances in Linearized Actuator Disk

Theory

The linearized equation governing the streamline displacement _ in inverse coordinates is

Zxx+ z_ = (C_o) (9A.1)

and _y --- 0 for x < 0. The boundary conditions (Eq. 9.29) are all homogeneous. The right-

hand side of (9A.1) will be written for short as R(x,V). To make it explicit that this must be

replaced by zero for x < o, we introduce the unit step function u(x) (u---0 for x<0, u=l for x>0),

 x,V) = r(v)u(x)

and write

(9A.2)

where r(V)=- my (W)/C3xo. The function R(x, W)can be decomposed into its even and odd parts

with respect to x:

R(x, _)= 1 I{_)+ In(x)- ½] r{V) (9A.3)

The solution g can then be broken into the part'_n, which satisfies the homogeneous

equation, plus the forced solution, which will itself have even and odd components _E and _0,

corresponding to the decomposition (9A.3). Imposing the homogeneous boundary conditions

(Eq. (9.29)) on "ZHensures that

_n-O

The forced, even solution _Eobeys (for all x)

_] (_E)XX + (_E)V'P = 1 R (W)
C2xo

and can therefore be taken as a function of W alone, which leads to immediate integration

;IsR(V2)dr2 Vl+AV+B

with A and B chosen to satisfy zE (x,o) = Z'E(x, H Cxo)= 0"

(9A.4)

(9A.5)

(9A.6)
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The odd forced solution, Zo must then be made to cancel ZE (-oo,V):

zo(-oo,V) =- _E(q j) (9A.7)

Therefore, at x_, _0(+oo,_F) = + EE (W), and superimposing,

T0(+oo,qJ) = 2 _'E (V) (9A.8)

On the other hand, since zo ( x, _F) is odd in x, we have To( O,q/) = O, so that

T0 (0,q') = TE (V) (9A.9)

Comparison of (9A.8) and (9A.9) proves that the displacement of each streamline is twice as large

far downstream as it is at the disk.
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Annendix 9B: Definition of Parameters Used in the Analysis

For convenient reference, we collect in this Appendix a number of performance parameters

whose definitions vary sometimes from author to author. The form given here was used

throughout our calculations.

Flow Coefficient

Cxo

¢=U (9B. 1)

Work Coefficient

V= Power
rh U 2 (9B.2)

For nominal conditions (no gap),

V = _)(tan o_2 + tan 133)- 1

and if there is zero exit swirl (_ = 1/tan 133) , then

(9B.3)

tan 0_2
'_1/= --

tan 133 (9B.4)

Degree of Reaction

R

Pressure drop in rotor

Pressure drop in stage

For zero gap (from Eqs. (9.23), (9.24),

tan 2 133-(tan _2- 1/0) 2
R=

2tan0 (x2 {_--_ - tail 2133},

and if the exit swirl is zero (_ = 1/tan 133), then

R=I- tan ix2

2 tan 133

(9B.5)

(9B.6)

(9B.7)

Zweifel Coefficient
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ZW _

Tangential force per Blade

(Tangential Projected Area) x (Relative Exit Dynamic Head)

For constant axial velocity,

ZW =2 {_) COS 2 [_3 (tan [$2- tan _3)

where s = Azimuthal blade spacing, and b = Axial depth of blading.

Blade Lift Coefficient

Blade I rift

CL = (Blade Chord) x (Relative Inlet Dynamic Head)

The ratio of ZW to CL is just the ratio of the reference dynamic heads:

CL = (ZW)(cos _2_2

 cos

(9B.8)

(9B.9)

(9B. 10)

(9B. 11)
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10.0 Conclusions and Recommendations

10.1 Major Findings

This work has f'wmly established the reality of the destabilizing forces f'n'st postulated by

Alford and Thomas. The general scaling and approximate order of magnitude is also consistent

with their pioneering insights. Beyond this, however, we have found a number of effects and

trends, some of which had not been previously reported. The most important of these are:

1) In addition to the Alford mechanism, namely the excess of turbine force generated on the

narrow-gap side of a deflected turbine and vice versa, a significant contribution to the cross-

forces comes from a nonuniform pattern of pressure which develops over the rotor area.

2) This pressure field is largely responsible for the existence of a direct force as well (along the

turbine offset axis). The Alford mechanism also Cooperates in creating these direct forces,

because the pattern of turbine force per unit length is slightly shifted with respect to that of the

gap width.

3) The larger part at least of the pressure nonuniformity pattern is found to extend over axial

lengths of the order of the turbine diameter, starting at the stator exit and to be radially

uniform. Thus, it cannot be explained as a local blade-tip effect (as, for example, associated

with the leakage vortex), but must result from azimuthal flow redistributions, as predicted by

our three-dimensional theory.

4) In addition to the large-scale pressure pattern, there are indications of localized effects

occurring specifically in the nan'ow-gap region. This, plus the behavior of the cross-forces at

small tip gap, strongly suggest the need to study carefully the viscous effects that may occur in

the gap due to the opposing drives of the pressure gradient and the casing relative motion.

5) The direct and cross-forces increase substantially as the tip gap is reduced, confirming earlier

findings in the German work on the topic. Furthermore, because this sensitivity is almost

entirely absent in the inviscid theoretical treatment, it reinforces the notion of a strong role of

viscosity at small gaps. This is despite the fact that cascade correlations would not indicate

viscosity as a major factor, and could be due, as noted, to the relative casing motion.
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10.2 Development of Analytical Models

A number of interrelated theoretical models were developed as tools for interpretation and

extrapolation of data. They are capable of predicting most of the trends observed, but are not

quantitatively accurate enough for design work. However, having established the important effects

and the theoretical methods of attack, these models do offer good prospects for development into

fully quantitative tools. Among the new achievements in the theoretical area are:

- A model which predicts efficiency and work losses from a uniform tip gap in situations

such as a shrouded turbine, where the leaking fluid does no work.

- A modification of the above to account for the partial work done by the fluid leaking

through the gap and by that rolling up with it into the leakage vortex.

An extension of these models to include dynamically offset turbine locations, by exploiting

the separation of radial and tangential scales. This allows predictions of flow

redistribution and of damping.

A simplified model for the effect of axially leaking fluid.

10.3 R¢¢omm_ndations

Our efforts in the area of dynamic Alford forces were not successful in obtaining

quantitative damping data. This is due to the large inertial and vibratory forces which contaminate

the data, particularly because of the need to extract the damping from forces along the shaking axis.

The existence of large dry friction in the linear beatings supporting the turbine assembly was

identified as the major source of the vibrations. A simple way to obtain at least one non-zero whirl

speed data point is to leave the shaft centered, but mount the turbine eccentrically on it, so as to

obtain simultaneous spin and whirl at the same frequency. This would have the advantage of

putting the major inertial force on the radial axis, while fluid forces of interest are on the tangential

axis.

A number of other remaining deficiencies have been mentioned in passing. In particular,

we recommend that especial attention be paid to the study (both experimental and theoretical) of

turbine (as opposed to compressor or fan) leakage flows and Alford forces with very small (less
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6) We have obtained agreement between the trends of forces measured directly and those inferred

from integration of local velocity triangles and pressure forces. The latter required extensive

probing of the flow field, but the agreement constitutes strong support for the mechanisms

discussed.

7) The cross forces are found to increase when the axial hub clearance and/or the axial stator-

rotor distance decreases. This contradicts earlier findings by German workers. The effect

appears to result from competition between opposing trends of the two contributions to cross

forces: work defect nonuniformity (which would increase with increasing axial clearance) and

pressure nonuniformity (which shows the opposite trend).

8) Separate experiments on labyrinth seals under circular whirl and rotation showed clearly that

shroud seals do exhibit substantial cross-force damping. This damping is independent of inlet

swirl or spin rate, and is a purely inviscid (kinematic) effect.

9) The direct forces on labyrinth seals with geometrically equal inlet and exit gaps can be

attributed to the variation of the carry-over coefficient of the second gap to the gap width.

This effect also increases noticeably the cross-forces.

10) Contrary to initial expectations, honeycomb lands have a minor effect only in seal cross-

forces, although they do reduce substantially the direct forces. This appears to be related to

interference with the carry-over effect.

11) Theory and data show a very large effect of the flow nonuniformities induced upstream of an

offset labyrinth seal on those in the seal gland itself, and hence on the seal cross forces. The

particular character of the upstream nonuniformities needs to be determined in each particular

case.

12) The direct and cross forces on a shrouded turbine fitted with a one-cavity labyrinth can be

calculated on the basis of a combination of seal theory (accounting for upstream

nonuniformity) and a simple form of work-defect theory.
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